from torch.utils.data import IterableDataset def count_lines(input_path: str) -> int: with open(input_path, "r", encoding="utf8") as f: return sum(1 for _ in f) class DatasetReader(IterableDataset): def __init__(self, filename, tokenizer, max_length=128, prompt: str = None): self.filename = filename self.tokenizer = tokenizer self.max_length = max_length self.current_line = 0 self.total_lines = count_lines(filename) self.prompt = prompt print(f"{self.total_lines} lines in {filename}") def preprocess(self, text: str): self.current_line += 1 text = text.strip() if len(text) == 0: print(f"Warning: empty sentence at line {self.current_line}") if self.prompt is not None: text = self.prompt.replace("%%SENTENCE%%", text) return self.tokenizer( text, padding=False, truncation=True, max_length=self.max_length, return_tensors=None, ) def __iter__(self): file_itr = open(self.filename, "r", encoding="utf8") mapped_itr = map(self.preprocess, file_itr) return mapped_itr def __len__(self): return self.total_lines class ParallelTextReader(IterableDataset): def __init__(self, pred_path: str, gold_path: str): self.pred_path = pred_path self.gold_path = gold_path pref_filename_lines = count_lines(pred_path) gold_path_lines = count_lines(gold_path) assert pref_filename_lines == gold_path_lines, ( f"Lines in {pred_path} and {gold_path} do not match " f"{pref_filename_lines} vs {gold_path_lines}" ) self.num_sentences = gold_path_lines self.current_line = 0 def preprocess(self, pred: str, gold: str): self.current_line += 1 pred = pred.strip() gold = gold.strip() if len(pred) == 0: print(f"Warning: Pred empty sentence at line {self.current_line}") if len(gold) == 0: print(f"Warning: Gold empty sentence at line {self.current_line}") return pred, [gold] def __iter__(self): pred_itr = open(self.pred_path, "r", encoding="utf8") gold_itr = open(self.gold_path, "r", encoding="utf8") mapped_itr = map(self.preprocess, pred_itr, gold_itr) return mapped_itr def __len__(self): return self.num_sentences