Spaces:
Runtime error
Runtime error
# ------------------- LIBRARIES -------------------- # | |
import os, logging, torch, streamlit as st | |
from transformers import ( | |
AutoTokenizer, AutoModelForCausalLM) | |
st.balloons() | |
# --------------------- HELPER --------------------- # | |
def C(text, color="yellow"): | |
color_dict: dict = dict( | |
red="\033[01;31m", | |
green="\033[01;32m", | |
yellow="\033[01;33m", | |
blue="\033[01;34m", | |
magenta="\033[01;35m", | |
cyan="\033[01;36m", | |
) | |
color_dict[None] = "\033[0m" | |
return ( | |
f"{color_dict.get(color, None)}" | |
f"{text}{color_dict[None]}") | |
st.balloons() | |
# ------------------ ENVIORNMENT ------------------- # | |
os.environ["HF_ENDPOINT"] = "https://huggingface.co." | |
device = ("cuda" | |
if torch.cuda.is_available() else "cpu") | |
logging.info(C("[INFO] "f"device = {device}")) | |
st.balloons() | |
# ------------------ INITITALIZE ------------------- # | |
def model_init(): | |
tokenizer = AutoTokenizer.from_pretrained( | |
"ckip-joint/bloom-1b1-zh") | |
model = AutoModelForCausalLM.from_pretrained( | |
"ckip-joint/bloom-1b1-zh", | |
# Ref.: Eric, Thanks! | |
# torch_dtype="auto", | |
# device_map="auto", | |
# Ref. for `half`: Chan-Jan, Thanks! | |
).eval().to(device) | |
st.balloons() | |
logging.info(C("[INFO] "f"Model init success!")) | |
return tokenizer, model | |
# tokenizer, model = model_init() | |
# st.balloons() | |
# try: | |
# # ===================== INPUT ====================== # | |
# # prompt = "\u554F\uFF1A\u53F0\u7063\u6700\u9AD8\u7684\u5EFA\u7BC9\u7269\u662F\uFF1F\u7B54\uFF1A" #@param {type:"string"} | |
# prompt = st.text_input("Prompt: ") | |
# st.balloons() | |
# # =================== INFERENCE ==================== # | |
# if prompt: | |
# st.balloons() | |
# with torch.no_grad(): | |
# [texts_out] = model.generate( | |
# **tokenizer( | |
# prompt, return_tensors="pt" | |
# ).to(device)) | |
# st.balloons() | |
# output_text = tokenizer.decode(texts_out) | |
# st.balloons() | |
# st.markdown(output_text) | |
# st.balloons() | |
# except Exception as err: | |
# st.write(str(err)) | |
# st.snow() | |
st.snow() |