Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -22,15 +22,12 @@ from PIL import Image
|
|
22 |
# set hf inference endpoint with lama for story
|
23 |
# get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
|
24 |
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
API_KEY= os.environ["API_KEY"]
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
class Story(BaseModel):
|
36 |
title: str = Field(description="A captivating title for the story.")
|
@@ -49,7 +46,6 @@ class Story(BaseModel):
|
|
49 |
Explain the action taking place in each scene. Come up with your own unique descriptions!"""
|
50 |
)
|
51 |
|
52 |
-
|
53 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
54 |
|
55 |
llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=GOOGLE_API_KEY)
|
@@ -72,60 +68,38 @@ prompt = PromptTemplate(
|
|
72 |
|
73 |
chain = prompt | model | parser
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
response =chain.invoke({"query": story_query})
|
78 |
-
|
79 |
-
response
|
80 |
-
|
81 |
-
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
"
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
scenes =
|
110 |
-
|
111 |
-
metadonne =response.metadonne
|
112 |
-
# Générer les images pour chaque scène et afficher avec les métadonnées dans une grille 2x3
|
113 |
-
st.title("Images générées avec métadonnées dans une grille 2x3")
|
114 |
-
for i in range(0, len(scenes), 2):
|
115 |
-
col1, col2 = st.columns(2)
|
116 |
-
col1.write(f"**Scène {i+1}:** {metadonne[i]}")
|
117 |
-
col1.image(generate_image(scenes[i]), caption=f"Image de la scène {i+1}", width=300)
|
118 |
-
|
119 |
-
# Vérifie si une deuxième scène existe pour afficher la deuxième image
|
120 |
-
if i+1 < len(scenes):
|
121 |
-
col2.write(f"**Scène {i+2}:** {metadonne[i+1]}")
|
122 |
-
col2.image(generate_image(scenes[i+1]), caption=f"Image de la scène {i+2}", width=300)
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
22 |
# set hf inference endpoint with lama for story
|
23 |
# get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
|
24 |
|
25 |
+
# Load environment variables from .env file
|
26 |
+
load_dotenv()
|
27 |
|
28 |
+
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
29 |
+
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
|
30 |
+
API_KEY = os.environ["API_KEY"]
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
class Story(BaseModel):
|
33 |
title: str = Field(description="A captivating title for the story.")
|
|
|
46 |
Explain the action taking place in each scene. Come up with your own unique descriptions!"""
|
47 |
)
|
48 |
|
|
|
49 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
50 |
|
51 |
llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=GOOGLE_API_KEY)
|
|
|
68 |
|
69 |
chain = prompt | model | parser
|
70 |
|
71 |
+
# Trigger the generation of the story only when a title is provided
|
72 |
+
if title:
|
73 |
+
response = chain.invoke({"query": story_query})
|
74 |
+
|
75 |
+
# Display the story elements if a response is received
|
76 |
+
if response:
|
77 |
+
st.write(response)
|
78 |
+
# Define negative prompt for the image generation
|
79 |
+
negative_prompt = "ugly, blurry, low-resolution, deformed, mutated, disfigured, missing limbs, disjointed, distorted, deformed, unnatural"
|
80 |
+
# Function for generating images
|
81 |
+
def generate_image(scene):
|
82 |
+
payload = {
|
83 |
+
"inputs": scene,
|
84 |
+
"guidance_scale": 0.8,
|
85 |
+
"num_inference_steps": 8,
|
86 |
+
"eta": 0.5,
|
87 |
+
"seed": 46,
|
88 |
+
"negative_prompt": negative_prompt
|
89 |
+
}
|
90 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
91 |
+
image_bytes = response.content
|
92 |
+
image = Image.open(io.BytesIO(image_bytes))
|
93 |
+
return image
|
94 |
+
|
95 |
+
# Generate and display images with meta-data in a 2x3 grid
|
96 |
+
st.title("Images générées avec métadonnées dans une grille 2x3")
|
97 |
+
for i in range(0, len(response.scenes), 2):
|
98 |
+
col1, col2 = st.columns(2)
|
99 |
+
col1.write(f"**Scène {i+1}:** {response.metadonne[i]}")
|
100 |
+
col1.image(generate_image(response.scenes[i]), caption=f"Image de la scène {i+1}", width=300)
|
101 |
+
|
102 |
+
# Check if a second scene exists for displaying the second image
|
103 |
+
if i+1 < len(response.scenes):
|
104 |
+
col2.write(f"**Scène {i+2}:** {response.metadonne[i+1]}")
|
105 |
+
col2.image(generate_image(response.scenes[i+1]), caption=f"Image de la scène {i+2}", width=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|