jeanflop commited on
Commit
269547f
·
verified ·
1 Parent(s): e939f21
Files changed (1) hide show
  1. app.py +136 -0
app.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import mediapy as media
3
+ import random
4
+ import sys
5
+ import torch
6
+ import matplotlib.pyplot as plt
7
+ from rembg import remove
8
+ from dotenv import load_dotenv
9
+
10
+ from typing import List
11
+ from langchain.output_parsers import PydanticOutputParser
12
+ from langchain_core.prompts import PromptTemplate
13
+ from langchain_core.pydantic_v1 import BaseModel, Field, validator
14
+ from getpass import getpass
15
+ from langchain_community.llms import HuggingFaceEndpoint
16
+ from langchain.chains import LLMChain
17
+ from diffusers import DiffusionPipeline, TCDScheduler
18
+ from huggingface_hub import hf_hub_download
19
+ from PIL import Image
20
+
21
+ # set hf inference endpoint with lama for story
22
+ # get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
23
+
24
+
25
+ load_dotenv()
26
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
27
+ os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
28
+
29
+ # Récupérer la clé API à partir des variables d'environnement
30
+ API_KEY = os.getenv("API_KEY")
31
+
32
+ # Vérifier si la clé API est présente
33
+ if API_KEY is None:
34
+ st.error("La clé API n'est pas définie. Veuillez la définir dans le fichier .env.")
35
+ st.stop()
36
+
37
+
38
+
39
+
40
+ class Story(BaseModel):
41
+ title: str = Field(description="A captivating title for the story.")
42
+ characters: list[str] = Field(
43
+ description="""Important:no json format. Six elements mandatory, each formatted as:
44
+ "[Character Name], [comma-separated adjectives], cartoon, style africa, painting".
45
+ Describe each character's appearance in detail. Be creative!"""
46
+ )
47
+ scenes: list[str] = Field(
48
+ description="""Important:no json format.no json format. Six elements mandatory, each a string describing a character's action.very important:use charaters description apperance, use only action verbs.
49
+ Each scene must follow the previous one chronologically, creating a complete narrative when combined.
50
+ Develop your story by detailing what each character DOES in each scene.Instead to use only name of characters to write this part, use name and this key word 'painting bening style mushgot 'as description appearence, it's very import to do loke that.if it's a new characters in the story, instead use his name use his name and add the keyword 'painting benin style'it is mandatory.Use your imagination!"""
51
+ )
52
+ metadonne: list[str] = Field(
53
+ description="""Important: no json format.Six elements mandatory, each a concise one-sentence description of the corresponding scene in the 'scenes' field.
54
+ Explain the action taking place in each scene. Come up with your own unique descriptions!"""
55
+ )
56
+
57
+
58
+ from langchain_google_genai import ChatGoogleGenerativeAI
59
+
60
+ llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=api_key)
61
+ model=llm
62
+
63
+ system="All instructions must be follow is very important, all story related to african culture and history is mandatory.You are a storyteller who specializes in creating educational tales about African culture. Your mission is to craft a narrative that teaches African children about their rich heritage. Your story is based on real events from the past, incorporating historical references, myths, and legends. story size is short length. Your narrative will be presented in six panels.Very important, For each panel, you will provide: A description of the characters, using precise and unique descriptions each time, ending with the keywords 'high quality', 'watercolor painting', 'painting Benin style', and 'mugshot', 'cartoon africa style' in the scenes or characters is mandatory.For description, using only words or groups of words separated by commas, without sentences. Each sentence in the panel's text should start with the character's name, and each sentence should be no longer than two small sentences. Each story has only three characters. Your story must always revolve around African legends and kingdoms, splitting the scenario into six parts. Be creative in each story"
64
+
65
+ st.title("Storytelling with AI")
66
+ # Create input zone
67
+ title = st.text_input("Discover a new story on africa, tape a topic !")
68
+
69
+ story_query=system+title
70
+ parser = PydanticOutputParser(pydantic_object=Story)
71
+
72
+ prompt = PromptTemplate(
73
+ template="Answer the user query.\n{format_instructions}\n{query}\n",
74
+ input_variables=["query"],
75
+ partial_variables={"format_instructions": parser.get_format_instructions()},
76
+ )
77
+
78
+ chain = prompt | model | parser
79
+
80
+ chain.invoke({"query": story_query})
81
+
82
+ response =chain.invoke({"query": story_query})
83
+
84
+ response
85
+
86
+ # modele load
87
+ # Choose among 1, 2, 4 and 8:
88
+ num_inference_steps = 8
89
+
90
+ import streamlit as st
91
+ import requests
92
+ import io
93
+ from PIL import Image
94
+
95
+ API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
96
+ headers = {"Authorization": f"Bearer {API_KEY}"}
97
+
98
+ # Fonction pour appeler l'API et générer une image pour une scène donnée
99
+ def generate_image(scene):
100
+ payload = {
101
+ "inputs": scene,
102
+ "guidance_scale": 0.8,
103
+ "num_inference_steps": 8,
104
+ "eta": 0.5,
105
+ "seed": 46,
106
+ "negative_prompt": negative_prompt
107
+ }
108
+ response = requests.post(API_URL, headers=headers, json=payload)
109
+ image_bytes = response.content
110
+ image = Image.open(io.BytesIO(image_bytes))
111
+ return image
112
+
113
+ # Contenu de la variable response
114
+ scenes =response.scenes
115
+
116
+ metadonne =response.metadonne
117
+ # Générer les images pour chaque scène et afficher avec les métadonnées dans une grille 2x3
118
+ st.title("Images générées avec métadonnées dans une grille 2x3")
119
+ for i in range(0, len(scenes), 2):
120
+ col1, col2 = st.columns(2)
121
+ col1.write(f"**Scène {i+1}:** {metadonne[i]}")
122
+ col1.image(generate_image(scenes[i]), caption=f"Image de la scène {i+1}", width=300)
123
+
124
+ # Vérifie si une deuxième scène existe pour afficher la deuxième image
125
+ if i+1 < len(scenes):
126
+ col2.write(f"**Scène {i+2}:** {metadonne[i+1]}")
127
+ col2.image(generate_image(scenes[i+1]), caption=f"Image de la scène {i+2}", width=300)
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+