import os import random import gradio as gr from langchain_core.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain_core.messages import SystemMessage from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain_groq import ChatGroq from langchain_google_genai import ChatGoogleGenerativeAI # Initialize Groq Langchain chat object and conversation groq_chat = ChatGroq( groq_api_key=os.environ.get("GROQ_API_KEY"), ) # Initialize Google Langchain chat object and conversation google_chat = ChatGoogleGenerativeAI( api_key=os.environ.get("GOOGLE_API_KEY"), ) # Initialize memory to manages the chat history, # ensuring the AI remembers the specified number of history messages, in this case 8. memory = ConversationBufferWindowMemory(k=8, memory_key="chat_history", return_messages=True) def generate_response(user_input, history, model, temperature, max_tokens, top_p, seed): print( "Model =", model) if model.startswith("gemini"): chat = google_chat chat.model = model else: chat = groq_chat chat.model_name = model prompt = ChatPromptTemplate.from_messages( [ # This is the persistent system prompt, sets the initial context for the AI. SystemMessage(content='You are a helpful AI assistant.'), # This placeholder will take care of chat history. MessagesPlaceholder(variable_name="chat_history"), # This template is where the user's current input will be injected into the prompt. HumanMessagePromptTemplate.from_template("{human_input}"), ] ) # Create a conversation sequence using RunnableSequence conversation = prompt | chat # Load chat_history chat_history = memory.load_memory_variables({})["chat_history"] # The chatbot's answer is generated by sending the full prompt to the LLM response = conversation.invoke({"human_input": user_input, "chat_history": chat_history}) # Update the memory with the new interaction memory.save_context({"input": user_input}, {"output": response.content}) return response.content # Define additional inputs and examples if needed additional_inputs = [ gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it","gemini-1.5-pro", "gemini-1.5-flash", "gemini-1.5-flash-8b", "gemini-2.0-flash-exp"], value="llama-3.1-70b-versatile", label="Model"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."), gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.
Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random") ] example1 = [ ["What's the distance from Tokyo to New York?"], ["What to San Francisco?"], ["Then what to Beijing?"], ["And what to Kyoto?"], ["What from Beijing to New York?"] ] # Create the Gradio interface interface = gr.ChatInterface( fn=generate_response, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, examples=example1, cache_examples=False, ) # Launch the app interface.launch()