from typing import List, Optional, Tuple, Union import numpy as np import PIL.Image import torch import torchvision def denormalize(images: Union[torch.Tensor, np.ndarray]) -> torch.Tensor: """ Denormalize an image array to [0,1]. """ return (images / 2 + 0.5).clamp(0, 1) def pt_to_numpy(images: torch.Tensor) -> np.ndarray: """ Convert a PyTorch tensor to a NumPy image. """ images = images.cpu().permute(0, 2, 3, 1).float().numpy() return images def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: """ Convert a NumPy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [ PIL.Image.fromarray(image.squeeze(), mode="L") for image in images ] else: pil_images = [PIL.Image.fromarray(image) for image in images] return pil_images def postprocess_image( image: torch.Tensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None, ) -> Union[torch.Tensor, np.ndarray, PIL.Image.Image]: if not isinstance(image, torch.Tensor): raise ValueError( f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" ) if output_type == "latent": return image do_normalize_flg = True if do_denormalize is None: do_denormalize = [do_normalize_flg] * image.shape[0] image = torch.stack( [ denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0]) ] ) if output_type == "pt": return image image = pt_to_numpy(image) if output_type == "np": return image if output_type == "pil": return numpy_to_pil(image) def process_image( image_pil: PIL.Image.Image, range: Tuple[int, int] = (-1, 1) ) -> Tuple[torch.Tensor, PIL.Image.Image]: image = torchvision.transforms.ToTensor()(image_pil) r_min, r_max = range[0], range[1] image = image * (r_max - r_min) + r_min return image[None, ...], image_pil def pil2tensor(image_pil: PIL.Image.Image) -> torch.Tensor: height = image_pil.height width = image_pil.width imgs = [] img, _ = process_image(image_pil) imgs.append(img) imgs = torch.vstack(imgs) images = torch.nn.functional.interpolate( imgs, size=(height, width), mode="bilinear" ) image_tensors = images.to(torch.float16) return image_tensors ### Optical flow utils def coords_grid(b, h, w, homogeneous=False, device=None): y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W] stacks = [x, y] if homogeneous: ones = torch.ones_like(x) # [H, W] stacks.append(ones) grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W] grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W] if device is not None: grid = grid.to(device) return grid def flow_warp(feature, flow, mask=False, padding_mode='zeros'): b, c, h, w = feature.size() assert flow.size(1) == 2 grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W] return bilinear_sample(feature, grid, padding_mode=padding_mode, return_mask=mask) def bilinear_sample(img, sample_coords, mode='bilinear', padding_mode='zeros', return_mask=False): # img: [B, C, H, W] # sample_coords: [B, 2, H, W] in image scale if sample_coords.size(1) != 2: # [B, H, W, 2] sample_coords = sample_coords.permute(0, 3, 1, 2) b, _, h, w = sample_coords.shape # Normalize to [-1, 1] x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2] img = torch.nn.functional.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) if return_mask: mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W] return img, mask return img def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.1, beta=0.5 ): # fwd_flow, bwd_flow: [B, 2, H, W] # alpha and beta values are following UnFlow (https://arxiv.org/abs/1711.07837) assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W] warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W] warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W] diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W] diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) threshold = alpha * flow_mag + beta fwd_occ = (diff_fwd > threshold).float() # [B, H, W] bwd_occ = (diff_bwd > threshold).float() return fwd_occ, bwd_occ