streamv2v_demo / utils /wrapper.py
jbilcke-hf's picture
jbilcke-hf HF staff
fix bug
e08f02e
raw
history blame
28.4 kB
import gc
import os
from pathlib import Path
import traceback
from typing import List, Literal, Optional, Union, Dict
import numpy as np
import torch
from diffusers import AutoencoderTiny, StableDiffusionPipeline
from diffusers.models.attention_processor import XFormersAttnProcessor, AttnProcessor2_0
from PIL import Image
from streamv2v import StreamV2V
from streamv2v.image_utils import postprocess_image
from streamv2v.models.attention_processor import CachedSTXFormersAttnProcessor, CachedSTAttnProcessor2_0
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
class StreamV2VWrapper:
def __init__(
self,
model_id_or_path: str,
t_index_list: List[int],
lora_dict: Optional[Dict[str, float]] = None,
output_type: Literal["pil", "pt", "np", "latent"] = "pil",
lcm_lora_id: Optional[str] = None,
vae_id: Optional[str] = None,
device: Literal["cpu", "cuda"] = "cuda",
dtype: torch.dtype = torch.float16,
frame_buffer_size: int = 1,
width: int = 512,
height: int = 512,
warmup: int = 10,
acceleration: Literal["none", "xformers", "tensorrt"] = "xformers",
do_add_noise: bool = True,
device_ids: Optional[List[int]] = None,
use_lcm_lora: bool = True,
use_tiny_vae: bool = True,
enable_similar_image_filter: bool = False,
similar_image_filter_threshold: float = 0.98,
similar_image_filter_max_skip_frame: int = 10,
use_denoising_batch: bool = True,
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
use_cached_attn: bool = True,
use_feature_injection: bool = True,
feature_injection_strength: float = 0.8,
feature_similarity_threshold: float = 0.98,
cache_interval: int = 4,
cache_maxframes: int = 1,
use_tome_cache: bool = True,
tome_metric: str = "keys",
tome_ratio: float = 0.5,
use_grid: bool = False,
seed: int = 2,
use_safety_checker: bool = False,
engine_dir: Optional[Union[str, Path]] = "engines",
):
"""
Initializes the StreamV2VWrapper.
Parameters
----------
model_id_or_path : str
The model identifier or path to load.
t_index_list : List[int]
The list of indices to use for inference.
lora_dict : Optional[Dict[str, float]], optional
Dictionary of LoRA names and their corresponding scales,
by default None. Example: {'LoRA_1': 0.5, 'LoRA_2': 0.7, ...}
output_type : Literal["pil", "pt", "np", "latent"], optional
The type of output image, by default "pil".
lcm_lora_id : Optional[str], optional
The identifier for the LCM-LoRA to load, by default None.
If None, the default LCM-LoRA ("latent-consistency/lcm-lora-sdv1-5") is used.
vae_id : Optional[str], optional
The identifier for the VAE to load, by default None.
If None, the default TinyVAE ("madebyollin/taesd") is used.
device : Literal["cpu", "cuda"], optional
The device to use for inference, by default "cuda".
dtype : torch.dtype, optional
The data type for inference, by default torch.float16.
frame_buffer_size : int, optional
The size of the frame buffer for denoising batch, by default 1.
width : int, optional
The width of the image, by default 512.
height : int, optional
The height of the image, by default 512.
warmup : int, optional
The number of warmup steps to perform, by default 10.
acceleration : Literal["none", "xformers", "tensorrt"], optional
The acceleration method, by default "xformers".
do_add_noise : bool, optional
Whether to add noise during denoising steps, by default True.
device_ids : Optional[List[int]], optional
List of device IDs to use for DataParallel, by default None.
use_lcm_lora : bool, optional
Whether to use LCM-LoRA, by default True.
use_tiny_vae : bool, optional
Whether to use TinyVAE, by default True.
enable_similar_image_filter : bool, optional
Whether to enable similar image filtering, by default False.
similar_image_filter_threshold : float, optional
The threshold for the similar image filter, by default 0.98.
similar_image_filter_max_skip_frame : int, optional
The maximum number of frames to skip for similar image filter, by default 10.
use_denoising_batch : bool, optional
Whether to use denoising batch, by default True.
cfg_type : Literal["none", "full", "self", "initialize"], optional
The CFG type for img2img mode, by default "self".
use_cached_attn : bool, optional
Whether to cache self-attention maps from previous frames to improve temporal consistency, by default True.
use_feature_injection : bool, optional
Whether to use feature maps from previous frames to improve temporal consistency, by default True.
feature_injection_strength : float, optional
The strength of feature injection, by default 0.8.
feature_similarity_threshold : float, optional
The similarity threshold for feature injection, by default 0.98.
cache_interval : int, optional
The interval at which to cache attention maps, by default 4.
cache_maxframes : int, optional
The maximum number of frames to cache attention maps, by default 1.
use_tome_cache : bool, optional
Whether to use Tome caching, by default True.
tome_metric : str, optional
The metric to use for Tome, by default "keys".
tome_ratio : float, optional
The ratio for Tome, by default 0.5.
use_grid : bool, optional
Whether to use grid, by default False.
seed : int, optional
The seed for random number generation, by default 2.
use_safety_checker : bool, optional
Whether to use a safety checker, by default False.
engine_dir : Optional[Union[str, Path]], optional
The directory for the engine, by default "engines".
"""
# TODO: Test SD turbo
self.sd_turbo = "turbo" in model_id_or_path
assert use_denoising_batch, "vid2vid mode must use denoising batch for now."
self.device = device
self.dtype = dtype
self.width = width
self.height = height
self.output_type = output_type
self.frame_buffer_size = frame_buffer_size
self.batch_size = (
len(t_index_list) * frame_buffer_size
if use_denoising_batch
else frame_buffer_size
)
self.use_denoising_batch = use_denoising_batch
self.use_cached_attn = use_cached_attn
self.use_feature_injection = use_feature_injection
self.feature_injection_strength = feature_injection_strength
self.feature_similarity_threshold = feature_similarity_threshold
self.cache_interval = cache_interval
self.cache_maxframes = cache_maxframes
self.use_tome_cache = use_tome_cache
self.tome_metric = tome_metric
self.tome_ratio = tome_ratio
self.use_grid = use_grid
self.use_safety_checker = use_safety_checker
self.stream: StreamV2V = self._load_model(
model_id_or_path=model_id_or_path,
lora_dict=lora_dict,
lcm_lora_id=lcm_lora_id,
vae_id=vae_id,
t_index_list=t_index_list,
acceleration=acceleration,
warmup=warmup,
do_add_noise=do_add_noise,
use_lcm_lora=use_lcm_lora,
use_tiny_vae=use_tiny_vae,
cfg_type=cfg_type,
seed=seed,
engine_dir=engine_dir,
)
if device_ids is not None:
self.stream.unet = torch.nn.DataParallel(
self.stream.unet, device_ids=device_ids
)
if enable_similar_image_filter:
self.stream.enable_similar_image_filter(similar_image_filter_threshold, similar_image_filter_max_skip_frame)
def prepare(
self,
prompt: str,
negative_prompt: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 1.2,
delta: float = 1.0,
) -> None:
"""
Prepares the model for inference.
Parameters
----------
prompt : str
The prompt to generate images from.
num_inference_steps : int, optional
The number of inference steps to perform, by default 50.
guidance_scale : float, optional
The guidance scale to use, by default 1.2.
delta : float, optional
The delta multiplier of virtual residual noise,
by default 1.0.
"""
self.stream.prepare(
prompt,
negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
delta=delta,
)
def __call__(
self,
image: Union[str, Image.Image, torch.Tensor],
prompt: Optional[str] = None,
) -> Union[Image.Image, List[Image.Image]]:
"""
Performs img2img
Parameters
----------
image : Optional[Union[str, Image.Image, torch.Tensor]]
The image to generate from.
prompt : Optional[str]
The prompt to generate images from.
Returns
-------
Union[Image.Image, List[Image.Image]]
The generated image.
"""
return self.img2img(image, prompt)
def img2img(
self, image: Union[str, Image.Image, torch.Tensor], prompt: Optional[str] = None
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
"""
Performs img2img.
Parameters
----------
image : Union[str, Image.Image, torch.Tensor]
The image to generate from.
Returns
-------
Image.Image
The generated image.
"""
if prompt is not None:
self.stream.update_prompt(prompt)
if isinstance(image, str) or isinstance(image, Image.Image):
image = self.preprocess_image(image)
image_tensor = self.stream(image)
image = self.postprocess_image(image_tensor, output_type=self.output_type)
if self.use_safety_checker:
safety_checker_input = self.feature_extractor(
image, return_tensors="pt"
).to(self.device)
_, has_nsfw_concept = self.safety_checker(
images=image_tensor.to(self.dtype),
clip_input=safety_checker_input.pixel_values.to(self.dtype),
)
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
return image
def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor:
"""
Preprocesses the image.
Parameters
----------
image : Union[str, Image.Image, torch.Tensor]
The image to preprocess.
Returns
-------
torch.Tensor
The preprocessed image.
"""
if isinstance(image, str):
image = Image.open(image).convert("RGB").resize((self.width, self.height))
if isinstance(image, Image.Image):
image = image.convert("RGB").resize((self.width, self.height))
return self.stream.image_processor.preprocess(
image, self.height, self.width
).to(device=self.device, dtype=self.dtype)
def postprocess_image(
self, image_tensor: torch.Tensor, output_type: str = "pil"
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
"""
Postprocesses the image.
Parameters
----------
image_tensor : torch.Tensor
The image tensor to postprocess.
Returns
-------
Union[Image.Image, List[Image.Image]]
The postprocessed image.
"""
if self.frame_buffer_size > 1:
return postprocess_image(image_tensor.cpu(), output_type=output_type)
else:
return postprocess_image(image_tensor.cpu(), output_type=output_type)[0]
def _load_model(
self,
model_id_or_path: str,
t_index_list: List[int],
lora_dict: Optional[Dict[str, float]] = None,
lcm_lora_id: Optional[str] = None,
vae_id: Optional[str] = None,
acceleration: Literal["none", "xformers", "tensorrt"] = "xformers",
warmup: int = 10,
do_add_noise: bool = True,
use_lcm_lora: bool = True,
use_tiny_vae: bool = True,
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
seed: int = 2,
engine_dir: Optional[Union[str, Path]] = "engines",
) -> StreamV2V:
"""
Loads the model.
This method does the following:
1. Loads the model from the model_id_or_path.
2. Loads and fuses the LCM-LoRA model from the lcm_lora_id if needed.
3. Loads the VAE model from the vae_id if needed.
4. Enables acceleration if needed.
5. Prepares the model for inference.
6. Load the safety checker if needed.
Parameters
----------
model_id_or_path : str
The model id or path to load.
t_index_list : List[int]
The t_index_list to use for inference.
lora_dict : Optional[Dict[str, float]], optional
The lora_dict to load, by default None.
Keys are the LoRA names and values are the LoRA scales.
Example: {'LoRA_1' : 0.5 , 'LoRA_2' : 0.7 ,...}
lcm_lora_id : Optional[str], optional
The lcm_lora_id to load, by default None.
vae_id : Optional[str], optional
The vae_id to load, by default None.
acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional
The acceleration method, by default "tensorrt".
warmup : int, optional
The number of warmup steps to perform, by default 10.
do_add_noise : bool, optional
Whether to add noise for following denoising steps or not,
by default True.
use_lcm_lora : bool, optional
Whether to use LCM-LoRA or not, by default True.
use_tiny_vae : bool, optional
Whether to use TinyVAE or not, by default True.
cfg_type : Literal["none", "full", "self", "initialize"],
optional
The cfg_type for img2img mode, by default " seed : int, optional
".
seed : int, optional
The seed, by default 2.
Returns
-------
StreamV2V
The loaded model.
"""
try: # Load from local directory
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
model_id_or_path,
).to(device=self.device, dtype=self.dtype)
except ValueError: # Load from huggingface
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
model_id_or_path,
).to(device=self.device, dtype=self.dtype)
except Exception: # No model found
traceback.print_exc()
print("Model load has failed. Doesn't exist.")
exit()
stream = StreamV2V(
pipe=pipe,
t_index_list=t_index_list,
torch_dtype=self.dtype,
width=self.width,
height=self.height,
do_add_noise=do_add_noise,
frame_buffer_size=self.frame_buffer_size,
use_denoising_batch=self.use_denoising_batch,
cfg_type=cfg_type,
)
if not self.sd_turbo:
if use_lcm_lora:
if lcm_lora_id is not None:
stream.load_lcm_lora(
pretrained_model_name_or_path_or_dict=lcm_lora_id,
adapter_name="lcm")
else:
stream.load_lcm_lora(
pretrained_model_name_or_path_or_dict="latent-consistency/lcm-lora-sdv1-5",
adapter_name="lcm"
)
if lora_dict is not None:
for lora_name, lora_scale in lora_dict.items():
stream.load_lora(lora_name)
if use_tiny_vae:
if vae_id is not None:
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
device=pipe.device, dtype=pipe.dtype
)
else:
stream.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd").to(
device=pipe.device, dtype=pipe.dtype
)
try:
if acceleration == "xformers":
stream.pipe.enable_xformers_memory_efficient_attention()
if self.use_cached_attn:
attn_processors = stream.pipe.unet.attn_processors
new_attn_processors = {}
for key, attn_processor in attn_processors.items():
assert isinstance(attn_processor, XFormersAttnProcessor), \
"We only replace 'XFormersAttnProcessor' to 'CachedSTXFormersAttnProcessor'"
new_attn_processors[key] = CachedSTXFormersAttnProcessor(name=key,
use_feature_injection=self.use_feature_injection,
feature_injection_strength=self.feature_injection_strength,
feature_similarity_threshold=self.feature_similarity_threshold,
interval=self.cache_interval,
max_frames=self.cache_maxframes,
use_tome_cache=self.use_tome_cache,
tome_metric=self.tome_metric,
tome_ratio=self.tome_ratio,
use_grid=self.use_grid)
stream.pipe.unet.set_attn_processor(new_attn_processors)
if acceleration == "tensorrt":
if self.use_cached_attn:
raise NotImplementedError("TensorRT seems not support the costom attention_processor")
else:
stream.pipe.enable_xformers_memory_efficient_attention()
if self.use_cached_attn:
attn_processors = stream.pipe.unet.attn_processors
new_attn_processors = {}
for key, attn_processor in attn_processors.items():
assert isinstance(attn_processor, XFormersAttnProcessor), \
"We only replace 'XFormersAttnProcessor' to 'CachedSTXFormersAttnProcessor'"
new_attn_processors[key] = CachedSTXFormersAttnProcessor(name=key,
use_feature_injection=self.use_feature_injection,
feature_injection_strength=self.feature_injection_strength,
feature_similarity_threshold=self.feature_similarity_threshold,
interval=self.cache_interval,
max_frames=self.cache_maxframes,
use_tome_cache=self.use_tome_cache,
tome_metric=self.tome_metric,
tome_ratio=self.tome_ratio,
use_grid=self.use_grid)
stream.pipe.unet.set_attn_processor(new_attn_processors)
from polygraphy import cuda
from streamv2v.acceleration.tensorrt import (
TorchVAEEncoder,
compile_unet,
compile_vae_decoder,
compile_vae_encoder,
)
from streamv2v.acceleration.tensorrt.engine import (
AutoencoderKLEngine,
UNet2DConditionModelEngine,
)
from streamv2v.acceleration.tensorrt.models import (
VAE,
UNet,
VAEEncoder,
)
def create_prefix(
model_id_or_path: str,
max_batch_size: int,
min_batch_size: int,
):
maybe_path = Path(model_id_or_path)
if maybe_path.exists():
return f"{maybe_path.stem}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--cache--{self.use_cached_attn}"
else:
return f"{model_id_or_path}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--cache--{self.use_cached_attn}"
engine_dir = Path(engine_dir)
unet_path = os.path.join(
engine_dir,
create_prefix(
model_id_or_path=model_id_or_path,
max_batch_size=stream.trt_unet_batch_size,
min_batch_size=stream.trt_unet_batch_size,
),
"unet.engine",
)
vae_encoder_path = os.path.join(
engine_dir,
create_prefix(
model_id_or_path=model_id_or_path,
max_batch_size=stream.frame_bff_size,
min_batch_size=stream.frame_bff_size,
),
"vae_encoder.engine",
)
vae_decoder_path = os.path.join(
engine_dir,
create_prefix(
model_id_or_path=model_id_or_path,
max_batch_size=stream.frame_bff_size,
min_batch_size=stream.frame_bff_size,
),
"vae_decoder.engine",
)
if not os.path.exists(unet_path):
os.makedirs(os.path.dirname(unet_path), exist_ok=True)
unet_model = UNet(
fp16=True,
device=stream.device,
max_batch_size=stream.trt_unet_batch_size,
min_batch_size=stream.trt_unet_batch_size,
embedding_dim=stream.text_encoder.config.hidden_size,
unet_dim=stream.unet.config.in_channels,
)
compile_unet(
stream.unet,
unet_model,
unet_path + ".onnx",
unet_path + ".opt.onnx",
unet_path,
opt_batch_size=stream.trt_unet_batch_size,
)
if not os.path.exists(vae_decoder_path):
os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True)
stream.vae.forward = stream.vae.decode
vae_decoder_model = VAE(
device=stream.device,
max_batch_size=stream.frame_bff_size,
min_batch_size=stream.frame_bff_size,
)
compile_vae_decoder(
stream.vae,
vae_decoder_model,
vae_decoder_path + ".onnx",
vae_decoder_path + ".opt.onnx",
vae_decoder_path,
opt_batch_size=stream.frame_bff_size,
)
delattr(stream.vae, "forward")
if not os.path.exists(vae_encoder_path):
os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True)
vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda"))
vae_encoder_model = VAEEncoder(
device=stream.device,
max_batch_size=stream.frame_bff_size,
min_batch_size=stream.frame_bff_size,
)
compile_vae_encoder(
vae_encoder,
vae_encoder_model,
vae_encoder_path + ".onnx",
vae_encoder_path + ".opt.onnx",
vae_encoder_path,
opt_batch_size=stream.frame_bff_size,
)
cuda_steram = cuda.Stream()
vae_config = stream.vae.config
vae_dtype = stream.vae.dtype
stream.unet = UNet2DConditionModelEngine(
unet_path, cuda_steram, use_cuda_graph=False
)
stream.vae = AutoencoderKLEngine(
vae_encoder_path,
vae_decoder_path,
cuda_steram,
stream.pipe.vae_scale_factor,
use_cuda_graph=False,
)
setattr(stream.vae, "config", vae_config)
setattr(stream.vae, "dtype", vae_dtype)
gc.collect()
torch.cuda.empty_cache()
print("TensorRT acceleration enabled.")
if acceleration == "sfast":
if self.use_cached_attn:
raise NotImplementedError
from streamv2v.acceleration.sfast import (
accelerate_with_stable_fast,
)
stream = accelerate_with_stable_fast(stream)
print("StableFast acceleration enabled.")
except Exception:
traceback.print_exc()
print("Acceleration has failed. Falling back to normal mode.")
if seed < 0: # Random seed
seed = np.random.randint(0, 1000000)
stream.prepare(
"",
"",
num_inference_steps=50,
guidance_scale=1.1
if stream.cfg_type in ["full", "self", "initialize"]
else 1.0,
generator=torch.manual_seed(seed),
seed=seed,
)
if self.use_safety_checker:
from transformers import CLIPFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
).to(pipe.device)
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
self.nsfw_fallback_img = Image.new("RGB", (512, 512), (0, 0, 0))
return stream