File size: 6,698 Bytes
51669fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys
import os

from utils.wrapper import StreamV2VWrapper

import torch

from config import Args
from pydantic import BaseModel, Field
from PIL import Image
import math

base_model = "runwayml/stable-diffusion-v1-5"

default_prompt = "A man is talking"

page_content = """<h1 class="text-3xl font-bold">StreamV2V</h1>
<p class="text-sm">
    This demo showcases
    <a
    href="https://jeff-liangf.github.io/projects/streamv2v/"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">StreamV2V
</a>
video-to-video pipeline using
    <a
    href="https://huggingface.co./latent-consistency/lcm-lora-sdv1-5"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">4-step LCM LORA</a
    > with a MJPEG stream server.
</p>
<p class="text-sm">
The base model is <a
href="https://huggingface.co./runwayml/stable-diffusion-v1-5"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">SD 1.5</a
    >. We also build in <a
    href="https://github.com/Jeff-LiangF/streamv2v/tree/main/demo_w_camera#download-lora-weights-for-better-stylization"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">some LORAs
</a> for better stylization.
</p>
"""


class Pipeline:
    class Info(BaseModel):
        name: str = "StreamV2V"
        input_mode: str = "image"
        page_content: str = page_content

    class InputParams(BaseModel):
        prompt: str = Field(
            default_prompt,
            title="Prompt",
            field="textarea",
            id="prompt",
        )
        # negative_prompt: str = Field(
        #     default_negative_prompt,
        #     title="Negative Prompt",
        #     field="textarea",
        #     id="negative_prompt",
        # )
        width: int = Field(
            512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
        )
        height: int = Field(
            512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
        )

    def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
        params = self.InputParams()

        self.stream = StreamV2VWrapper(
            model_id_or_path=base_model,
            t_index_list=[30, 35, 40, 45],
            frame_buffer_size=1,
            width=params.width,
            height=params.height,
            warmup=10,
            acceleration=args.acceleration,
            do_add_noise=True,
            output_type="pil",
            use_denoising_batch=True,
            use_cached_attn=True,
            use_feature_injection=True,
            feature_injection_strength=0.8,
            feature_similarity_threshold=0.98,
            cache_interval=4,
            cache_maxframes=1,
            use_tome_cache=True,
            seed=1,
        )
        self._init_lora()
        self.last_prompt = default_prompt
        self.stream.prepare(
            prompt=default_prompt,
            num_inference_steps=50,
            guidance_scale=1.0,
        )

        self.lora_active = False
        self.lora_trigger_words = ['pixelart', 'pixel art', 'Pixel art', 'PixArFK'
                                   'lowpoly', 'low poly', 'Low poly',
                                   'Claymation', 'claymation',
                                   'crayons', 'Crayons', 'crayons doodle', 'Crayons doodle',
                                   'sketch', 'Sketch', 'pencil drawing', 'Pencil drawing',
                                   'oil painting', 'Oil painting']

    def _init_lora(self):
        self.stream.stream.load_lora("./lora_weights/PixelArtRedmond15V-PixelArt-PIXARFK.safetensors", adapter_name='pixelart')
        self.stream.stream.load_lora("./lora_weights/low_poly.safetensors", adapter_name='lowpoly')
        self.stream.stream.load_lora("./lora_weights/Claymation.safetensors", adapter_name='claymation')
        self.stream.stream.load_lora("./lora_weights/doodle.safetensors", adapter_name='crayons')
        self.stream.stream.load_lora("./lora_weights/Sketch_offcolor.safetensors", adapter_name='sketch')
        self.stream.stream.load_lora("./lora_weights/bichu-v0612.safetensors", adapter_name='oilpainting')

    def _activate_lora(self, prompt: str):

        if any(word in prompt for word in ['pixelart', 'pixel art', 'Pixel art', 'PixArFK']):
            self.stream.stream.pipe.set_adapters(["lcm", "pixelart"], adapter_weights=[1.0, 1.0])
            print("Use LORA: pixelart in ./lora_weights/PixelArtRedmond15V-PixelArt-PIXARFK.safetensors")
        elif any(word in prompt for word in ['lowpoly', 'low poly', 'Low poly']):
            self.stream.stream.pipe.set_adapters(["lcm", "lowpoly"], adapter_weights=[1.0, 1.0])
            print("Use LORA: lowpoly in ./lora_weights/low_poly.safetensors")
        elif any(word in prompt for word in ['Claymation', 'claymation']):
            self.stream.stream.pipe.set_adapters(["lcm", "claymation"], adapter_weights=[1.0, 1.0])
            print("Use LORA: claymation in ./lora_weights/Claymation.safetensors")
        elif any(word in prompt for word in ['crayons', 'Crayons', 'crayons doodle', 'Crayons doodle']):
            self.stream.stream.pipe.set_adapters(["lcm", "crayons"], adapter_weights=[1.0, 1.0])
            print("Use LORA: crayons in ./lora_weights/doodle.safetensors")
        elif any(word in prompt for word in ['sketch', 'Sketch', 'pencil drawing', 'Pencil drawing']):
            self.stream.stream.pipe.set_adapters(["lcm", "sketch"], adapter_weights=[1.0, 1.0])
            print("Use LORA: sketch in ./lora_weights/Sketch_offcolor.safetensors")
        elif any(word in prompt for word in ['oil painting', 'Oil painting']):
            self.stream.stream.pipe.set_adapters(["lcm", "oilpainting"], adapter_weights=[1.0, 1.0])
            print("Use LORA: oilpainting in ./lora_weights/bichu-v0612.safetensors")

    def _deactivate_lora(self):
        self.stream.stream.pipe.set_adapters("lcm")
        print("Deactivate LORA, back to SD1.5")
    
    def _check_trigger_words(self, prompt: str):
        return any(word in prompt for word in self.lora_trigger_words)
    
    def predict(self, params: "Pipeline.InputParams") -> Image.Image:
        
        if self._check_trigger_words(params.prompt):
            if not self.lora_active:
                self._activate_lora(params.prompt)
                self.lora_active = True
        else:
            if self.lora_active:
                self._deactivate_lora()
                self.lora_active = False

        image_tensor = self.stream.preprocess_image(params.image)
        output_image = self.stream(image=image_tensor, prompt=params.prompt)

        return output_image