File size: 15,416 Bytes
69f3483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from importlib import import_module
from typing import Callable, Optional, Union
from collections import deque

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.models.attention_processor import Attention
from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.lora import LoRACompatibleLinear, LoRALinearLayer

from .utils import get_nn_feats, random_bipartite_soft_matching

if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None
    
class CachedSTAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self, name=None, use_feature_injection=False,
                 feature_injection_strength=0.8, 
                 feature_similarity_threshold=0.98,
                 interval=4, 
                 max_frames=1, 
                 use_tome_cache=False, 
                 tome_metric="keys", 
                 use_grid=False, 
                 tome_ratio=0.5):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.name = name
        self.use_feature_injection = use_feature_injection
        self.fi_strength = feature_injection_strength
        self.threshold = feature_similarity_threshold
        self.zero_tensor = torch.tensor(0)
        self.frame_id = torch.tensor(0)
        self.interval = torch.tensor(interval)
        self.max_frames = max_frames
        self.cached_key = None
        self.cached_value = None
        self.cached_output = None
        self.use_tome_cache = use_tome_cache
        self.tome_metric = tome_metric
        self.use_grid = use_grid
        self.tome_ratio = tome_ratio
    
    def _tome_step_kvout(self, keys, values, outputs):
        keys = torch.cat([self.cached_key, keys], dim=1)
        values = torch.cat([self.cached_value, values], dim=1)
        outputs = torch.cat([self.cached_output, outputs], dim=1)
        m_kv_out, _, _= random_bipartite_soft_matching(metric=keys, use_grid=self.use_grid, ratio=self.tome_ratio)
        compact_keys, compact_values, compact_outputs = m_kv_out(keys, values, outputs)
        self.cached_key = compact_keys
        self.cached_value = compact_values
        self.cached_output = compact_outputs
        
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        args = () if USE_PEFT_BACKEND else (scale,)
        query = attn.to_q(hidden_states, *args)

        is_selfattn = False
        if encoder_hidden_states is None:
            is_selfattn = True
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)

        if is_selfattn:
            cached_key = key.clone()
            cached_value = value.clone()
            
            # Avoid if statement -> replace the dynamic graph to static graph
            if torch.equal(self.frame_id, self.zero_tensor):
            # ONNX
                self.cached_key = cached_key
                self.cached_value = cached_value

            key = torch.cat([key, self.cached_key], dim=1)
            value = torch.cat([value, self.cached_value], dim=1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        if is_selfattn:
            cached_output = hidden_states.clone()

            if torch.equal(self.frame_id, self.zero_tensor):
                self.cached_output = cached_output

            if self.use_feature_injection and ("up_blocks.0" in self.name or "up_blocks.1" in self.name or 'mid_block' in self.name):
                nn_hidden_states = get_nn_feats(hidden_states, self.cached_output, threshold=self.threshold)
                hidden_states = hidden_states * (1-self.fi_strength) + self.fi_strength * nn_hidden_states

        mod_result = torch.remainder(self.frame_id, self.interval)
        if torch.equal(mod_result, self.zero_tensor) and is_selfattn:
                self._tome_step_kvout(cached_key, cached_value, cached_output)
        
        self.frame_id = self.frame_id + 1
        
        return hidden_states



class CachedSTXFormersAttnProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None, name=None, 
                 use_feature_injection=False, feature_injection_strength=0.8, feature_similarity_threshold=0.98,
                 interval=4, max_frames=4, use_tome_cache=False, tome_metric="keys", use_grid=False, tome_ratio=0.5):
        self.attention_op = attention_op
        self.name = name
        self.use_feature_injection = use_feature_injection
        self.fi_strength = feature_injection_strength
        self.threshold = feature_similarity_threshold
        self.frame_id = 0
        self.interval = interval
        self.cached_key = deque(maxlen=max_frames)
        self.cached_value = deque(maxlen=max_frames)
        self.cached_output = deque(maxlen=max_frames)
        self.use_tome_cache = use_tome_cache
        self.tome_metric = tome_metric
        self.use_grid = use_grid
        self.tome_ratio = tome_ratio

    def _tome_step_kvout(self, keys, values, outputs):
        if len(self.cached_value) == 1:
            keys = torch.cat(list(self.cached_key) + [keys], dim=1)
            values = torch.cat(list(self.cached_value) + [values], dim=1)
            outputs = torch.cat(list(self.cached_output) + [outputs], dim=1)
            m_kv_out, _, _= random_bipartite_soft_matching(metric=eval(self.tome_metric), use_grid=self.use_grid, ratio=self.tome_ratio)
            compact_keys, compact_values, compact_outputs = m_kv_out(keys, values, outputs)
            self.cached_key.append(compact_keys)
            self.cached_value.append(compact_values)
            self.cached_output.append(compact_outputs)
        else:
            self.cached_key.append(keys)
            self.cached_value.append(values)
            self.cached_output.append(outputs)

    def _tome_step_kv(self, keys, values):
        if len(self.cached_value) == 1:
            keys = torch.cat(list(self.cached_key) + [keys], dim=1)
            values = torch.cat(list(self.cached_value) + [values], dim=1)
            _, m_kv, _= random_bipartite_soft_matching(metric=eval(self.tome_metric), use_grid=self.use_grid, ratio=self.tome_ratio)
            compact_keys, compact_values = m_kv(keys, values)
            self.cached_key.append(compact_keys)
            self.cached_value.append(compact_values)
        else:
            self.cached_key.append(keys)
            self.cached_value.append(values)
            
    def _tome_step_out(self, outputs):
        if len(self.cached_value) == 1:
            outputs = torch.cat(list(self.cached_output) + [outputs], dim=1)
            _, _, m_out= random_bipartite_soft_matching(metric=outputs, use_grid=self.use_grid, ratio=self.tome_ratio)
            compact_outputs = m_out(outputs)
            self.cached_output.append(compact_outputs)
        else:
            self.cached_output.append(outputs)

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
        residual = hidden_states

        args = () if USE_PEFT_BACKEND else (scale,)

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, key_tokens, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
        if attention_mask is not None:
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states, *args)

        is_selfattn = False
        if encoder_hidden_states is None:
            is_selfattn = True
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)

        if is_selfattn:
            cached_key = key.clone()
            cached_value = value.clone()

            if len(self.cached_key) > 0:
                key = torch.cat([key] + list(self.cached_key), dim=1)
                value = torch.cat([value] + list(self.cached_value), dim=1)

            ## Code for storing and visualizing features 
            # if self.frame_id % self.interval == 0:
            #     # if "down_blocks.0" in self.name or "up_blocks.3" in self.name:
            #     #     feats = {
            #     #                 "hidden_states": hidden_states.clone().cpu(),
            #     #                 "query": query.clone().cpu(),
            #     #                 "key": cached_key.cpu(),
            #     #                 "value": cached_value.cpu(),
            #     #             }
            #     #     torch.save(feats, f'./outputs/self_attn_feats_SD/{self.name}.frame{self.frame_id}.pt')
            #     if self.use_tome_cache:
            #         cached_key, cached_value = self._tome_step(cached_key, cached_value)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor
        if is_selfattn:
            cached_output = hidden_states.clone()
            if self.use_feature_injection and ("up_blocks.0" in self.name or "up_blocks.1" in self.name or 'mid_block' in self.name):
                if len(self.cached_output) > 0:
                    nn_hidden_states = get_nn_feats(hidden_states, self.cached_output, threshold=self.threshold)
                    hidden_states = hidden_states * (1-self.fi_strength) + self.fi_strength * nn_hidden_states
            
        if self.frame_id % self.interval == 0:
            if is_selfattn:
                if self.use_tome_cache:
                    self._tome_step_kvout(cached_key, cached_value, cached_output)
                else:
                    self.cached_key.append(cached_key)
                    self.cached_value.append(cached_value)
                    self.cached_output.append(cached_output)
        self.frame_id += 1

        return hidden_states