Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,989 Bytes
f4dea7d 2f7798c f4dea7d cb3fdda f4dea7d cb3fdda f4dea7d 974ed41 f4dea7d 2f7798c f4dea7d 2f7798c f4dea7d 2f7798c f4dea7d 11443d4 2f7798c 11443d4 2f7798c 11443d4 2f7798c f4dea7d 2f7798c f4dea7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import { createLlamaPrompt } from "@/lib/createLlamaPrompt"
import { dirtyLLMResponseCleaner } from "@/lib/dirtyLLMResponseCleaner"
import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser"
import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner"
import { predict } from "./predict"
import { Preset } from "../engine/presets"
export const getStory = async ({
preset,
prompt = "",
}: {
preset: Preset;
prompt: string;
}): Promise<string[]> => {
const query = createLlamaPrompt([
{
role: "system",
content: [
`You are a comic book author specialized in ${preset.llmPrompt}`,
`Please write detailed drawing instructions for the 5 panels of a new silent comic book page.`,
`Give your response as a JSON array like this: \`Array<{ panel: number; caption: string}>\`.`,
// `Give your response as Markdown bullet points.`,
`Be brief in your 5 captions, don't add your own comments. Be straight to the point, and never reply things like "Sure, I can.." etc.`
].filter(item => item).join("\n")
},
{
role: "user",
content: `The story is: ${prompt}`,
}
]) + "```json\n["
let result = ""
try {
result = await predict(query)
if (!result.trim().length) {
throw new Error("empty result!")
}
} catch (err) {
console.log(`prediction of the story failed, trying again..`)
try {
result = await predict(query+".")
if (!result.trim().length) {
throw new Error("empty result!")
}
} catch (err) {
console.error(`prediction of the story failed again!`)
throw new Error(`failed to generate the story ${err}`)
}
}
console.log("Raw response from LLM:", result)
const tmp = dirtyLLMResponseCleaner(result)
let captions: string[] = []
try {
captions = dirtyLLMJsonParser(tmp)
} catch (err) {
console.log(`failed to read LLM response: ${err}`)
// it is possible that the LLM has generated multiple JSON files like this:
/*
[ {
"panel": 1,
"caption": "A samurai stands at the edge of a bustling street in San Francisco, looking out of place among the hippies and beatniks."
} ]
[ {
"panel": 2,
"caption": "The samurai spots a group of young people playing music on the sidewalk. He approaches them, intrigued."
} ]
*/
try {
// in that case, we can try to repair it like so:
let strategy2 = `[${tmp.split("[").pop() || ""}`
strategy2.replaceAll("[", ",")
captions = dirtyLLMJsonParser(strategy2)
} catch (err2) {
// in case of failure here, it might be because the LLM hallucinated a completely different response,
// such as markdown. There is no real solution.. but we can try a fallback:
captions = (
tmp.split("*")
.map(item => item.replaceAll("[", "[").replaceAll("]", "]").trim())
)
}
}
return captions.map(caption => dirtyCaptionCleaner(caption))
} |