import shlex import subprocess import gradio as gr import numpy as np import spaces import torch from diffusers import DiffusionPipeline subprocess.run( shlex.split( "pip install https://huggingface.co./spaces/dylanebert/LGM-mini/resolve/main/wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl" ) ) pipeline = DiffusionPipeline.from_pretrained( "jamesmcbennett/MVMesh", custom_pipeline="jamesmcbennett/MVMesh", torch_dtype=torch.float16, trust_remote_code=True, ).to("cuda") @spaces.GPU def run(image): input_image = np.array(image, dtype=np.float32) / 255.0 splat = pipeline( "", input_image, guidance_scale=5, num_inference_steps=30, elevation=0 ) splat_file = "/tmp/output.ply" pipeline.save_ply(splat, splat_file) return splat_file demo = gr.Interface( fn=run, title="MVMesh", description="An extremely simplified version of [LGM](https://huggingface.co./ashawkey/LGM). Intended as resource for the [ML for 3D Course](https://huggingface.co./learn/ml-for-3d-course/unit0/introduction).", inputs="image", outputs=gr.Model3D(), examples=[ "https://huggingface.co./datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg" ], cache_examples=True, allow_duplication=True, ) demo.queue().launch()