|
import tempfile
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
import trimesh
|
|
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
|
from diffusers.utils import export_to_ply
|
|
|
|
|
|
class Model:
|
|
def __init__(self):
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
|
self.pipe.to(self.device)
|
|
|
|
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
|
self.pipe_img.to(self.device)
|
|
|
|
def to_glb(self, ply_path: str) -> str:
|
|
mesh = trimesh.load(ply_path)
|
|
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
|
mesh = mesh.apply_transform(rot)
|
|
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
|
mesh = mesh.apply_transform(rot)
|
|
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
|
mesh.export(mesh_path.name, file_type="glb")
|
|
return mesh_path.name
|
|
|
|
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
|
generator = torch.Generator(device=self.device).manual_seed(seed)
|
|
images = self.pipe(
|
|
prompt,
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=num_steps,
|
|
output_type="mesh",
|
|
).images
|
|
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
|
export_to_ply(images[0], ply_path.name)
|
|
return self.to_glb(ply_path.name)
|
|
|
|
def run_image(
|
|
self, image: PIL.Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64
|
|
) -> str:
|
|
generator = torch.Generator(device=self.device).manual_seed(seed)
|
|
images = self.pipe_img(
|
|
image,
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=num_steps,
|
|
output_type="mesh",
|
|
).images
|
|
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
|
export_to_ply(images[0], ply_path.name)
|
|
return self.to_glb(ply_path.name)
|
|
|