import math from inspect import isfunction from typing import Any, Optional import torch import torch.nn.functional as F from einops import rearrange, repeat from torch import nn, einsum try: import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True except: XFORMERS_IS_AVAILABLE = False print("No module 'xformers'.") def exists(val): return val is not None def uniq(arr): return {el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange( qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 ) k = k.softmax(dim=-1) context = torch.einsum("bhdn,bhen->bhde", k, v) out = torch.einsum("bhde,bhdn->bhen", context, q) out = rearrange( out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w ) return self.to_out(out) class CrossAttention(nn.Module): def __init__( self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0 ): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head**-0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = zero_module( nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) ) self.attn_map_cache = None def forward( self, x, context=None ): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) ## old sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k # attention, what we cannot get enough of if sim.shape[-1] > 1: sim = sim.softmax(dim=-1) # softmax on token dim else: sim = sim.sigmoid() # sigmoid on pixel dim # save attn_map if self.attn_map_cache is not None: bh, n, l = sim.shape size = int(n**0.5) self.attn_map_cache["size"] = size self.attn_map_cache["attn_map"] = sim out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, "(b h) n d -> b n (h d)", h=h) return self.to_out(out) class MemoryEfficientCrossAttention(nn.Module): # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 def __init__( self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs ): super().__init__() # print( # f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " # f"{heads} heads with a dimension of {dim_head}." # ) inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.attention_op: Optional[Any] = None def forward( self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0, ): if additional_tokens is not None: # get the number of masked tokens at the beginning of the output sequence n_tokens_to_mask = additional_tokens.shape[1] # add additional token x = torch.cat([additional_tokens, x], dim=1) q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) if n_times_crossframe_attn_in_self: # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439 assert x.shape[0] % n_times_crossframe_attn_in_self == 0 # n_cp = x.shape[0]//n_times_crossframe_attn_in_self k = repeat( k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_times_crossframe_attn_in_self, ) v = repeat( v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_times_crossframe_attn_in_self, ) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention( q, k, v, attn_bias=None, op=self.attention_op ) # TODO: Use this directly in the attention operation, as a bias if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) if additional_tokens is not None: # remove additional token out = out[:, n_tokens_to_mask:] return self.to_out(out) class BasicTransformerBlock(nn.Module): def __init__( self, dim, n_heads, d_head, dropout=0.0, t_context_dim=None, v_context_dim=None, gated_ff=True ): super().__init__() # self-attention self.attn1 = MemoryEfficientCrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=None ) # textual cross-attention if t_context_dim is not None and t_context_dim > 0: self.t_attn = CrossAttention( query_dim=dim, context_dim=t_context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) self.t_norm = nn.LayerNorm(dim) # visual cross-attention if v_context_dim is not None and v_context_dim > 0: self.v_attn = CrossAttention( query_dim=dim, context_dim=v_context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) self.v_norm = nn.LayerNorm(dim) self.norm1 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) def forward(self, x, t_context=None, v_context=None): x = ( self.attn1( self.norm1(x), context=None ) + x ) if hasattr(self, "t_attn"): x = ( self.t_attn( self.t_norm(x), context=t_context ) + x ) if hasattr(self, "v_attn"): x = ( self.v_attn( self.v_norm(x), context=v_context ) + x ) x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image NEW: use_linear for more efficiency instead of the 1x1 convs """ def __init__( self, in_channels, n_heads, d_head, depth=1, dropout=0.0, t_context_dim=None, v_context_dim=None, use_linear=False ): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) if not use_linear: self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) else: self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, n_heads, d_head, dropout=dropout, t_context_dim=t_context_dim, v_context_dim=v_context_dim ) for d in range(depth) ] ) if not use_linear: self.proj_out = zero_module( nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) ) else: self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) self.use_linear = use_linear def forward(self, x, t_context=None, v_context=None): b, c, h, w = x.shape x_in = x x = self.norm(x) if not self.use_linear: x = self.proj_in(x) x = rearrange(x, "b c h w -> b (h w) c").contiguous() if self.use_linear: x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): x = block(x, t_context=t_context, v_context=v_context) if self.use_linear: x = self.proj_out(x) x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() if not self.use_linear: x = self.proj_out(x) return x + x_in