|
import math |
|
from inspect import isfunction |
|
from typing import Any, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from torch import nn, einsum |
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILABLE = True |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
print("No module 'xformers'.") |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return {el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) |
|
if not glu |
|
else GEGLU(dim, inner_dim) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class LinearAttention(nn.Module): |
|
def __init__(self, dim, heads=4, dim_head=32): |
|
super().__init__() |
|
self.heads = heads |
|
hidden_dim = dim_head * heads |
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) |
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
qkv = self.to_qkv(x) |
|
q, k, v = rearrange( |
|
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 |
|
) |
|
k = k.softmax(dim=-1) |
|
context = torch.einsum("bhdn,bhen->bhde", k, v) |
|
out = torch.einsum("bhde,bhdn->bhen", context, q) |
|
out = rearrange( |
|
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w |
|
) |
|
return self.to_out(out) |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
query_dim, |
|
context_dim=None, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0.0 |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = zero_module( |
|
nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), |
|
nn.Dropout(dropout) |
|
) |
|
) |
|
|
|
self.attn_map_cache = None |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None |
|
): |
|
h = self.heads |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) |
|
|
|
|
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
del q, k |
|
|
|
|
|
if sim.shape[-1] > 1: |
|
sim = sim.softmax(dim=-1) |
|
else: |
|
sim = sim.sigmoid() |
|
|
|
|
|
if self.attn_map_cache is not None: |
|
bh, n, l = sim.shape |
|
size = int(n**0.5) |
|
self.attn_map_cache["size"] = size |
|
self.attn_map_cache["attn_map"] = sim |
|
|
|
out = einsum('b i j, b j d -> b i d', sim, v) |
|
out = rearrange(out, "(b h) n d -> b n (h d)", h=h) |
|
|
|
return self.to_out(out) |
|
|
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
|
|
def __init__( |
|
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
additional_tokens=None, |
|
n_times_crossframe_attn_in_self=0, |
|
): |
|
if additional_tokens is not None: |
|
|
|
n_tokens_to_mask = additional_tokens.shape[1] |
|
|
|
x = torch.cat([additional_tokens, x], dim=1) |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
|
|
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 |
|
|
|
k = repeat( |
|
k[::n_times_crossframe_attn_in_self], |
|
"b ... -> (b n) ...", |
|
n=n_times_crossframe_attn_in_self, |
|
) |
|
v = repeat( |
|
v[::n_times_crossframe_attn_in_self], |
|
"b ... -> (b n) ...", |
|
n=n_times_crossframe_attn_in_self, |
|
) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
out = xformers.ops.memory_efficient_attention( |
|
q, k, v, attn_bias=None, op=self.attention_op |
|
) |
|
|
|
|
|
if exists(mask): |
|
raise NotImplementedError |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
if additional_tokens is not None: |
|
|
|
out = out[:, n_tokens_to_mask:] |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
t_context_dim=None, |
|
v_context_dim=None, |
|
gated_ff=True |
|
): |
|
super().__init__() |
|
|
|
|
|
self.attn1 = MemoryEfficientCrossAttention( |
|
query_dim=dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
context_dim=None |
|
) |
|
|
|
|
|
if t_context_dim is not None and t_context_dim > 0: |
|
self.t_attn = CrossAttention( |
|
query_dim=dim, |
|
context_dim=t_context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout |
|
) |
|
self.t_norm = nn.LayerNorm(dim) |
|
|
|
|
|
if v_context_dim is not None and v_context_dim > 0: |
|
self.v_attn = CrossAttention( |
|
query_dim=dim, |
|
context_dim=v_context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout |
|
) |
|
self.v_norm = nn.LayerNorm(dim) |
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
|
|
def forward(self, x, t_context=None, v_context=None): |
|
x = ( |
|
self.attn1( |
|
self.norm1(x), |
|
context=None |
|
) |
|
+ x |
|
) |
|
if hasattr(self, "t_attn"): |
|
x = ( |
|
self.t_attn( |
|
self.t_norm(x), |
|
context=t_context |
|
) |
|
+ x |
|
) |
|
if hasattr(self, "v_attn"): |
|
x = ( |
|
self.v_attn( |
|
self.v_norm(x), |
|
context=v_context |
|
) |
|
+ x |
|
) |
|
|
|
x = self.ff(self.norm3(x)) + x |
|
|
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
t_context_dim=None, |
|
v_context_dim=None, |
|
use_linear=False |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = Normalize(in_channels) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
n_heads, |
|
d_head, |
|
dropout=dropout, |
|
t_context_dim=t_context_dim, |
|
v_context_dim=v_context_dim |
|
) |
|
for d in range(depth) |
|
] |
|
) |
|
if not use_linear: |
|
self.proj_out = zero_module( |
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
else: |
|
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, t_context=None, v_context=None): |
|
|
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, t_context=t_context, v_context=v_context) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
|
|
return x + x_in |