Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,064 Bytes
4e961a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from inference import inference_and_run
import spaces
import os
import re
import shutil
model_name = 'Ferret-UI'
cur_dir = os.path.dirname(os.path.abspath(__file__))
@spaces.GPU()
def inference_with_gradio(chatbot, image, prompt, model_path, box=None, temperature=0.2, top_p=0.7, max_new_tokens=512):
dir_path = os.path.dirname(image)
# image_path = image
# Define the directory where you want to save the image (current directory)
filename = os.path.basename(image)
dir_path = "./"
# Create the new path for the file (in the current directory)
image_path = os.path.join(dir_path, filename)
shutil.copy(image, image_path)
print("filename path: ", filename)
if "gemma" in model_path.lower():
conv_mode = "ferret_gemma_instruct"
else:
conv_mode = "ferret_llama_3"
# inference_text = inference_and_run(
# image_path=image_path,
# prompt=prompt,
# conv_mode=conv_mode,
# model_path=model_path,
# box=box
# )
inference_text = inference_and_run(
image_path=filename, # double check this
image_dir=dir_path,
prompt=prompt,
model_path="jadechoghari/Ferret-UI-Gemma2b",
conv_mode=conv_mode,
temperature=temperature,
top_p=top_p,
box=box,
max_new_tokens=max_new_tokens,
# stop=stop # Assuming we want to process the image
)
if isinstance(inference_text, (list, tuple)):
inference_text = str(inference_text[0])
# Update chatbot history with new message pair
new_history = chatbot.copy() if chatbot else []
new_history.append((prompt, inference_text))
return new_history
def submit_chat(chatbot, text_input):
response = ''
# chatbot.append((text_input, response))
return chatbot, ''
def clear_chat():
return [], None, "", "", 0.2, 0.7, 512
html = f"""
<div style="text-align: center; padding: 20px;">
<div style="display: inline-block; background-color: #f5f5f7; padding: 20px; border-radius: 20px; box-shadow: 0px 6px 20px rgba(0, 0, 0, 0.1);">
<div style="display: flex; align-items: center;">
<img src='https://github.com/apple/ml-ferret/blob/main/ferretui/figs/ferretui_icon.png?raw=true' alt='Ferret-UI'
style='width: 80px; height: 80px; border-radius: 20px; box-shadow: 0px 8px 16px rgba(0, 0, 0, 0.2);'/>
<div style="margin-left: 15px;">
<h1 style="font-size: 2.8em; font-family: -apple-system, BlinkMacSystemFont, sans-serif; color: #1D1D1F;
font-weight: bold; margin-bottom: 0;"> {model_name}</h1>
<p style="font-size: 1.2em; color: #6e6e73; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 5px;">
📱 Grounded Mobile UI Understanding with Multimodal LLMs.<br>
A new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities.
</p>
<a href='https://huggingface.co./jadechoghari/Ferret-UI-Gemma2b' style='text-decoration: none;'>
<button style="background-color: #007aff; color: white; font-size: 1.2em; padding: 10px 20px; border-radius: 10px; border: none; margin-top: 10px; box-shadow: 0px 4px 12px rgba(0, 122, 255, 0.4); cursor: pointer;">
🤗 Try on Hugging Face
</button>
</a>
</div>
</div>
</div>
<p style="font-size: 1.2em; color: #86868B; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 30px;">
We release two Ferret-UI checkpoints, built on gemma-2b and Llama-3-8B models respectively, for public exploration. 🚀
</p>
</div>
"""
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": False
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
}]
# Set up UI components
image_input = gr.Image(label="Upload Image", type="filepath", height=350)
text_input = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
model_dropdown = gr.Dropdown(choices=[
"jadechoghari/Ferret-UI-Gemma2b",
"jadechoghari/Ferret-UI-Llama8b",
], label="Model Path", value="jadechoghari/Ferret-UI-Gemma2b")
bounding_box_input = gr.Textbox(placeholder="Optional bounding box (x1, y1, x2, y2)", label="Bounding Box (optional)")
# Adding Sliders for temperature, top_p, and max_new_tokens
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.2, label="Temperature")
top_p_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.7, label="Top P")
max_new_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=512, label="Max New Tokens")
chatbot = gr.Chatbot(label="Chat with Ferret-UI", height=400, show_copy_button=True, latex_delimiters=latex_delimiters_set, type="tuples")
with gr.Blocks(title=model_name, theme=gr.themes.Ocean()) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(scale=3):
image_input.render()
text_input.render()
model_dropdown.render()
bounding_box_input.render()
temperature_input.render() # Render temperature input
top_p_input.render() # Render top_p input
max_new_tokens_input.render()
gr.Examples(
examples=[
["appstore_reminders.png", "Describe the image in details", "jadechoghari/Ferret-UI-Gemma2b", None],
["appstore_reminders.png", "What's inside the selected region?", "jadechoghari/Ferret-UI-Gemma2b", "189, 906, 404, 970"],
["appstore_reminders.png", "Where is the Game Tab?", "jadechoghari/Ferret-UI-Gemma2b", None],
],
inputs=[image_input, text_input, model_dropdown, bounding_box_input]
)
with gr.Column(scale=7):
chatbot.render()
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
send_click_event = send_btn.click(
inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input], chatbot
).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
submit_event = text_input.submit(
inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input], chatbot
).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input])
demo.launch() |