Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,619 Bytes
714db0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
'''
Usage:
python -m ferret.serve.gradio_web_server --controller http://localhost:10000 --add_region_feature
'''
import argparse
import datetime
import json
import os
import time
import gradio as gr
import requests
from conversation import (default_conversation, conv_templates,
SeparatorStyle)
from constants import LOGDIR
from utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
import hashlib
# Added
import re
from copy import deepcopy
from PIL import ImageDraw, ImageFont
from gradio import processing_utils
import numpy as np
import torch
import torch.nn.functional as F
from scipy.ndimage import binary_dilation, binary_erosion
import pdb
from gradio_css import code_highlight_css
import spaces
from inference import inference_and_run
DEFAULT_REGION_REFER_TOKEN = "[region]"
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "FERRET Client"}
no_change_btn = gr.Button
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
VOCAB_IMAGE_W = 1000 # 224
VOCAB_IMAGE_H = 1000 # 224
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
if mask is not None:
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
coor_mask = torch.zeros((raw_w, raw_h))
# Assume it samples a point.
if len(coor) == 2:
# Define window size
span = 5
# Make sure the window does not exceed array bounds
x_min = max(0, coor[0] - span)
x_max = min(raw_w, coor[0] + span + 1)
y_min = max(0, coor[1] - span)
y_max = min(raw_h, coor[1] + span + 1)
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
assert (coor_mask==1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
elif len(coor) == 4:
# Box input or Sketch input.
coor_mask = torch.zeros((raw_w, raw_h))
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
if mask is not None:
coor_mask = coor_mask * mask
# coor_mask = torch.from_numpy(coor_mask)
# pdb.set_trace()
assert len(coor_mask.nonzero()) != 0
return coor_mask.tolist()
def draw_box(coor, region_mask, region_ph, img, input_mode):
colors = ["red"]
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("./DejaVuSans.ttf", size=18)
if input_mode == 'Box':
draw.rectangle([coor[0], coor[1], coor[2], coor[3]], outline=colors[0], width=4)
draw.rectangle([coor[0], coor[3] - int(font.size * 1.2), coor[0] + int((len(region_ph) + 0.8) * font.size * 0.6), coor[3]], outline=colors[0], fill=colors[0], width=4)
draw.text([coor[0] + int(font.size * 0.2), coor[3] - int(font.size*1.2)], region_ph, font=font, fill=(255,255,255))
elif input_mode == 'Point':
r = 8
leftUpPoint = (coor[0]-r, coor[1]-r)
rightDownPoint = (coor[0]+r, coor[1]+r)
twoPointList = [leftUpPoint, rightDownPoint]
draw.ellipse(twoPointList, outline=colors[0], width=4)
draw.rectangle([coor[0], coor[1], coor[0] + int((len(region_ph) + 0.8) * font.size * 0.6), coor[1] + int(font.size * 1.2)], outline=colors[0], fill=colors[0], width=4)
draw.text([coor[0] + int(font.size * 0.2), coor[1]], region_ph, font=font, fill=(255,255,255))
elif input_mode == 'Sketch':
draw.rectangle([coor[0], coor[3] - int(font.size * 1.2), coor[0] + int((len(region_ph) + 0.8) * font.size * 0.6), coor[3]], outline=colors[0], fill=colors[0], width=4)
draw.text([coor[0] + int(font.size * 0.2), coor[3] - int(font.size*1.2)], region_ph, font=font, fill=(255,255,255))
# Use morphological operations to find the boundary
mask = np.array(region_mask)
dilated = binary_dilation(mask, structure=np.ones((3,3)))
eroded = binary_erosion(mask, structure=np.ones((3,3)))
boundary = dilated ^ eroded # XOR operation to find the difference between dilated and eroded mask
# Loop over the boundary and paint the corresponding pixels
for i in range(boundary.shape[0]):
for j in range(boundary.shape[1]):
if boundary[i, j]:
# This is a pixel on the boundary, paint it red
draw.point((i, j), fill=colors[0])
else:
NotImplementedError(f'Input mode of {input_mode} is not Implemented.')
return img
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
# TODO: return model manually just one for now called "jadechoghari/Ferret-UI-Gemma2b"
def get_model_list():
# ret = requests.post(args.controller_url + "/refresh_all_workers")
# assert ret.status_code == 200
# ret = requests.post(args.controller_url + "/list_models")
# models = ret.json()["models"]
# models.sort(key=lambda x: priority.get(x, x))
# logger.info(f"Models: {models}")
# return models
models = ["jadechoghari/Ferret-UI-Gemma2b"]
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
# logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown(
value=model, visible=True)
state = default_conversation.copy()
print("state", state)
return (state,
dropdown_update,
gr.Chatbot(visible=True),
gr.Textbox(visible=True),
gr.Button(visible=True),
gr.Row(visible=True),
gr.Accordion(visible=True))
def load_demo_refresh_model_list(request: gr.Request):
# logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
return (state, gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else ""),
gr.Chatbot(visible=True),
gr.Textbox(visible=True),
gr.Button(visible=True),
gr.Row(visible=True),
gr.Accordion(visible=True))
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5
def clear_history(request: gr.Request):
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 + \
(None, {'region_placeholder_tokens':[],'region_coordinates':[],'region_masks':[],'region_masks_in_prompts':[],'masks':[]}, [], None)
def resize_bbox(box, image_w=None, image_h=None, default_wh=VOCAB_IMAGE_W):
ratio_w = image_w * 1.0 / default_wh
ratio_h = image_h * 1.0 / default_wh
new_box = [int(box[0] * ratio_w), int(box[1] * ratio_h), \
int(box[2] * ratio_w), int(box[3] * ratio_h)]
return new_box
def show_location(sketch_pad, chatbot):
image = sketch_pad['image']
img_w, img_h = image.size
new_bboxes = []
old_bboxes = []
# chatbot[0] is image.
text = chatbot[1:]
for round_i in text:
human_input = round_i[0]
model_output = round_i[1]
# TODO: Difference: vocab representation.
# pattern = r'\[x\d*=(\d+(?:\.\d+)?), y\d*=(\d+(?:\.\d+)?), x\d*=(\d+(?:\.\d+)?), y\d*=(\d+(?:\.\d+)?)\]'
pattern = r'\[(\d+(?:\.\d+)?), (\d+(?:\.\d+)?), (\d+(?:\.\d+)?), (\d+(?:\.\d+)?)\]'
matches = re.findall(pattern, model_output)
for match in matches:
x1, y1, x2, y2 = map(int, match)
new_box = resize_bbox([x1, y1, x2, y2], img_w, img_h)
new_bboxes.append(new_box)
old_bboxes.append([x1, y1, x2, y2])
set_old_bboxes = sorted(set(map(tuple, old_bboxes)), key=list(map(tuple, old_bboxes)).index)
list_old_bboxes = list(map(list, set_old_bboxes))
set_bboxes = sorted(set(map(tuple, new_bboxes)), key=list(map(tuple, new_bboxes)).index)
list_bboxes = list(map(list, set_bboxes))
output_image = deepcopy(image)
draw = ImageDraw.Draw(output_image)
#TODO: change from local to online path
font = ImageFont.truetype("./DejaVuSans.ttf", 28)
for i in range(len(list_bboxes)):
x1, y1, x2, y2 = list_old_bboxes[i]
x1_new, y1_new, x2_new, y2_new = list_bboxes[i]
obj_string = '[obj{}]'.format(i)
for round_i in text:
model_output = round_i[1]
model_output = model_output.replace('[{}, {}, {}, {}]'.format(x1, y1, x2, y2), obj_string)
round_i[1] = model_output
draw.rectangle([(x1_new, y1_new), (x2_new, y2_new)], outline="red", width=3)
draw.text((x1_new+2, y1_new+5), obj_string[1:-1], fill="red", font=font)
return (output_image, [chatbot[0]] + text, disable_btn)
def add_text(state, text, image_process_mode, original_image, sketch_pad, request: gr.Request):
print("add text called!")
image = sketch_pad['image']
print("text", text, "and : ", len(text))
print("Image path", original_image)
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:1536] # Hard cut-off
if original_image is None:
assert image is not None
original_image = image.copy()
print('No location, copy original image in add_text')
if image is not None:
if state.first_round:
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
# text = '<Image><image></Image>' + text
text = text + '\n<image>'
text = (text, original_image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
new_state = default_conversation.copy()
new_state.first_round = False
state=new_state
print('First round add image finsihed.')
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", original_image) + (disable_btn,) * 5
def post_process_code(code):
sep = "\n```"
if sep in code:
blocks = code.split(sep)
if len(blocks) % 2 == 1:
for i in range(1, len(blocks), 2):
blocks[i] = blocks[i].replace("\\_", "_")
code = sep.join(blocks)
return code
def find_indices_in_order(str_list, STR):
indices = []
i = 0
while i < len(STR):
for element in str_list:
if STR[i:i+len(element)] == element:
indices.append(str_list.index(element))
i += len(element) - 1
break
i += 1
return indices
def format_region_prompt(prompt, refer_input_state):
# Find regions in prompts and assign corresponding region masks
refer_input_state['region_masks_in_prompts'] = []
indices_region_placeholder_in_prompt = find_indices_in_order(refer_input_state['region_placeholder_tokens'], prompt)
refer_input_state['region_masks_in_prompts'] = [refer_input_state['region_masks'][iii] for iii in indices_region_placeholder_in_prompt]
# Find regions in prompts and replace with real coordinates and region feature token.
for region_ph_index, region_ph_i in enumerate(refer_input_state['region_placeholder_tokens']):
prompt = prompt.replace(region_ph_i, '{} {}'.format(refer_input_state['region_coordinates'][region_ph_index], DEFAULT_REGION_FEA_TOKEN))
return prompt
@spaces.GPU()
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, refer_input_state, request: gr.Request):
# def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
print("state messages: ", state.messages)
if len(state.messages) == state.offset + 2:
# First round of conversation
# template_name = 'ferret_v1'
template_name = 'ferret_gemma_instruct'
# Below is LLaVA's original templates.
# if "llava" in model_name.lower():
# if 'llama-2' in model_name.lower():
# template_name = "llava_llama_2"
# elif "v1" in model_name.lower():
# if 'mmtag' in model_name.lower():
# template_name = "v1_mmtag"
# elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
# template_name = "v1_mmtag"
# else:
# template_name = "llava_v1"
# elif "mpt" in model_name.lower():
# template_name = "mpt"
# else:
# if 'mmtag' in model_name.lower():
# template_name = "v0_mmtag"
# elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
# template_name = "v0_mmtag"
# else:
# template_name = "llava_v0"
# elif "mpt" in model_name:
# template_name = "mpt_text"
# elif "llama-2" in model_name:
# template_name = "llama_2"
# else:
# template_name = "vicuna_v1"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
state.first_round = False
# # Query worker address
# controller_url = args.controller_url
# ret = requests.post(controller_url + "/get_worker_address",
# json={"model": model_name})
# worker_addr = ret.json()["address"]
# logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
# if worker_addr == "":
# state.messages[-1][-1] = server_error_msg
# yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
# return
# Construct prompt
prompt = state.get_prompt()
if args.add_region_feature:
prompt = format_region_prompt(prompt, refer_input_state)
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
# fishy can remove it
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
if args.add_region_feature:
pload['region_masks'] = refer_input_state['region_masks_in_prompts']
logger.info(f"==== add region_masks_in_prompts to request ====\n")
pload['images'] = state.get_images()
print(f'Input Prompt: {prompt}')
print("all_image_hash", all_image_hash)
state.messages[-1][-1] = "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
stop = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
#TODO: define inference and run function
results, extracted_texts = inference_and_run(
image_path=all_image_hash[0], # double check this
prompt=prompt,
model_path=model_name,
conv_mode="ferret_gemma_instruct", # Default mode from the original function
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
stop=stop # Assuming we want to process the image
)
# response = requests.post(worker_addr + "/worker_generate_stream",
# headers=headers, json=pload, stream=True, timeout=10)
response = extracted_texts
logger.info(f"This is the respone {response}")
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
# 𦦠Ferret: Refer and Ground Anything Anywhere at Any Granularity
""")
# [[Project Page]](https://llava-vl.github.io) [[Paper]](https://arxiv.org/abs/2304.08485)
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only
""")
css = code_highlight_css + """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
Instructions = '''
Instructions:
1. Select a 'Referring Input Type'
2. Draw on the image to refer to a region/point.
3. Copy the region id from 'Referring Input Type' to refer to a region in your chat.
'''
from gradio.events import Dependency
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
return super().preprocess(x)
from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
from gradio.blocks import Block
if TYPE_CHECKING:
from gradio.components import Timer
def draw(input_mode, input, refer_input_state, refer_text_show, imagebox_refer):
if type(input) == dict:
image = deepcopy(input['image'])
mask = deepcopy(input['mask'])
else:
mask = deepcopy(input)
# W, H -> H, W, 3
image_new = np.asarray(image)
img_height = image_new.shape[0]
img_width = image_new.shape[1]
# W, H, 4 -> H, W
mask_new = np.asarray(mask)[:,:,0].copy()
mask_new = torch.from_numpy(mask_new)
mask_new = (F.interpolate(mask_new.unsqueeze(0).unsqueeze(0), (img_height, img_width), mode='bilinear') > 0)
mask_new = mask_new[0, 0].transpose(1, 0).long()
if len(refer_input_state['masks']) == 0:
last_mask = torch.zeros_like(mask_new)
else:
last_mask = refer_input_state['masks'][-1]
diff_mask = mask_new - last_mask
if torch.all(diff_mask == 0):
print('Init Uploading Images.')
return (refer_input_state, refer_text_show, image)
else:
refer_input_state['masks'].append(mask_new)
if input_mode == 'Point':
nonzero_points = diff_mask.nonzero()
nonzero_points_avg_x = torch.median(nonzero_points[:, 0])
nonzero_points_avg_y = torch.median(nonzero_points[:, 1])
sampled_coor = [nonzero_points_avg_x, nonzero_points_avg_y]
# pdb.set_trace()
cur_region_masks = generate_mask_for_feature(sampled_coor, raw_w=img_width, raw_h=img_height)
elif input_mode == 'Box' or input_mode == 'Sketch':
# pdb.set_trace()
x1x2 = diff_mask.max(1)[0].nonzero()[:, 0]
y1y2 = diff_mask.max(0)[0].nonzero()[:, 0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
# pdb.set_trace()
sampled_coor = [x1, y1, x2, y2]
if input_mode == 'Box':
cur_region_masks = generate_mask_for_feature(sampled_coor, raw_w=img_width, raw_h=img_height)
else:
cur_region_masks = generate_mask_for_feature(sampled_coor, raw_w=img_width, raw_h=img_height, mask=diff_mask)
else:
raise NotImplementedError(f'Input mode of {input_mode} is not Implemented.')
# TODO(haoxuan): Hack img_size to be 224 here, need to make it a argument.
if len(sampled_coor) == 2:
point_x = int(VOCAB_IMAGE_W * sampled_coor[0] / img_width)
point_y = int(VOCAB_IMAGE_H * sampled_coor[1] / img_height)
cur_region_coordinates = f'[{int(point_x)}, {int(point_y)}]'
elif len(sampled_coor) == 4:
point_x1 = int(VOCAB_IMAGE_W * sampled_coor[0] / img_width)
point_y1 = int(VOCAB_IMAGE_H * sampled_coor[1] / img_height)
point_x2 = int(VOCAB_IMAGE_W * sampled_coor[2] / img_width)
point_y2 = int(VOCAB_IMAGE_H * sampled_coor[3] / img_height)
cur_region_coordinates = f'[{int(point_x1)}, {int(point_y1)}, {int(point_x2)}, {int(point_y2)}]'
cur_region_id = len(refer_input_state['region_placeholder_tokens'])
cur_region_token = DEFAULT_REGION_REFER_TOKEN.split(']')[0] + str(cur_region_id) + ']'
refer_input_state['region_placeholder_tokens'].append(cur_region_token)
refer_input_state['region_coordinates'].append(cur_region_coordinates)
refer_input_state['region_masks'].append(cur_region_masks)
assert len(refer_input_state['region_masks']) == len(refer_input_state['region_coordinates']) == len(refer_input_state['region_placeholder_tokens'])
refer_text_show.append((cur_region_token, ''))
# Show Parsed Referring.
imagebox_refer = draw_box(sampled_coor, cur_region_masks, \
cur_region_token, imagebox_refer, input_mode)
return (refer_input_state, refer_text_show, imagebox_refer)
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", visible=False, container=False)
with gr.Blocks(title="FERRET", theme=gr.themes.Base(), css=css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
gr.Markdown(Instructions)
with gr.Row():
with gr.Column(scale=4):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False)
original_image = gr.Image(type="pil", visible=False)
image_process_mode = gr.Radio(
["Raw+Processor", "Crop", "Resize", "Pad"],
value="Raw+Processor",
label="Preprocess for non-square image",
visible=False)
# Added for any-format input.
sketch_pad = ImageMask(label="Image & Sketch", type="pil", elem_id="img2text")
refer_input_mode = gr.Radio(
["Point", "Box", "Sketch"],
value="Point",
label="Referring Input Type")
refer_input_state = gr.State({'region_placeholder_tokens':[],
'region_coordinates':[],
'region_masks':[],
'region_masks_in_prompts':[],
'masks':[],
})
refer_text_show = gr.HighlightedText(value=[], label="Referring Input Cache")
imagebox_refer = gr.Image(type="pil", label="Parsed Referring Input")
imagebox_output = gr.Image(type="pil", label='Output Vis')
cur_dir = os.path.dirname(os.path.abspath(__file__))
# gr.Examples(examples=[
# # [f"{cur_dir}/examples/harry-potter-hogwarts.jpg", "What is in [region0]? And what do people use it for?"],
# # [f"{cur_dir}/examples/ingredients.jpg", "What objects are in [region0] and [region1]?"],
# # [f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image? And tell me the coordinates of mentioned objects."],
# [f"{cur_dir}/examples/ferret.jpg", "What's the relationship between object [region0] and object [region1]?"],
# [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here? Tell me the coordinates in response."],
# [f"{cur_dir}/examples/flickr_9472793441.jpg", "Describe the image in details."],
# # [f"{cur_dir}/examples/coco_000000281759.jpg", "What are the locations of the woman wearing a blue dress, the woman in flowery top, the girl in purple dress, the girl wearing green shirt?"],
# [f"{cur_dir}/examples/room_planning.jpg", "How to improve the design of the given room?"],
# [f"{cur_dir}/examples/make_sandwitch.jpg", "How can I make a sandwich with available ingredients?"],
# [f"{cur_dir}/examples/bathroom.jpg", "What is unusual about this image?"],
# [f"{cur_dir}/examples/kitchen.png", "Is the object a man or a chicken? Explain the reason."],
# ], inputs=[sketch_pad, textbox])
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=5):
chatbot = gr.Chatbot(elem_id="chatbot", label="FERRET", visible=False).style(height=750)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False) as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False)
# flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
#stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False)
location_btn = gr.Button(value="πͺ Show location", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, location_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, location_btn])
downvote_btn.click(downvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, location_btn])
# flag_btn.click(flag_last_response,
# [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, [state, image_process_mode],
[state, chatbot, textbox] + btn_list).then(
http_bot, [state, model_selector, temperature, top_p, max_output_tokens, refer_input_state],
[state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox_output, original_image] + btn_list + \
[sketch_pad, refer_input_state, refer_text_show, imagebox_refer])
location_btn.click(show_location,
[sketch_pad, chatbot], [imagebox_output, chatbot, location_btn])
#TODO: fix bug text and image not adding when clicking submit
textbox.submit(add_text, [state, textbox, image_process_mode, original_image, sketch_pad], [state, chatbot, textbox, original_image] + btn_list
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, refer_input_state],
[state, chatbot] + btn_list)
submit_btn.click(add_text, [state, textbox, image_process_mode, original_image, sketch_pad], [state, chatbot, textbox, original_image] + btn_list
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, refer_input_state],
[state, chatbot] + btn_list)
sketch_pad.edit(
draw,
inputs=[refer_input_mode, sketch_pad, refer_input_state, refer_text_show, imagebox_refer],
outputs=[refer_input_state, refer_text_show, imagebox_refer],
queue=True,
)
if args.model_list_mode == "once":
demo.load(load_demo, [url_params], [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row],
_js=get_window_url_params)
elif args.model_list_mode == "reload":
demo.load(load_demo_refresh_model_list, None, [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row])
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=8)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
parser.add_argument("--add_region_feature", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
models = get_model_list()
logger.info(args)
demo = build_demo(args.embed)
demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10,
api_open=False).launch(
server_name=args.host, server_port=args.port, share=True) |