File size: 7,064 Bytes
4e961a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from inference import inference_and_run
import spaces
import os
import re
import shutil

model_name = 'Ferret-UI'
cur_dir = os.path.dirname(os.path.abspath(__file__))

@spaces.GPU()
def inference_with_gradio(chatbot, image, prompt, model_path, box=None, temperature=0.2, top_p=0.7, max_new_tokens=512):
    dir_path = os.path.dirname(image)
    # image_path = image
    # Define the directory where you want to save the image (current directory)
    filename = os.path.basename(image)
    dir_path = "./"

    # Create the new path for the file (in the current directory)
    image_path = os.path.join(dir_path, filename)
    shutil.copy(image, image_path)
    print("filename path: ", filename)
    if "gemma" in model_path.lower():
        conv_mode = "ferret_gemma_instruct"
    else:
        conv_mode = "ferret_llama_3"
    
    # inference_text = inference_and_run(
    #     image_path=image_path,
    #     prompt=prompt,
    #     conv_mode=conv_mode,
    #     model_path=model_path,
    #     box=box
    # )
    inference_text = inference_and_run(
        image_path=filename, # double check this
        image_dir=dir_path,
        prompt=prompt,
        model_path="jadechoghari/Ferret-UI-Gemma2b",
        conv_mode=conv_mode,
        temperature=temperature, 
        top_p=top_p,
        box=box,
        max_new_tokens=max_new_tokens,
        # stop=stop    # Assuming we want to process the image
        )
    if isinstance(inference_text, (list, tuple)):
        inference_text = str(inference_text[0])
        
    # Update chatbot history with new message pair
    new_history = chatbot.copy() if chatbot else []
    new_history.append((prompt, inference_text))
    return new_history

def submit_chat(chatbot, text_input):
    response = ''
    # chatbot.append((text_input, response))
    return chatbot, ''

def clear_chat():
    return [], None, "", "", 0.2, 0.7, 512


html = f"""
<div style="text-align: center; padding: 20px;">
    <div style="display: inline-block; background-color: #f5f5f7; padding: 20px; border-radius: 20px; box-shadow: 0px 6px 20px rgba(0, 0, 0, 0.1);">
        <div style="display: flex; align-items: center;">
            <img src='https://github.com/apple/ml-ferret/blob/main/ferretui/figs/ferretui_icon.png?raw=true' alt='Ferret-UI' 
                style='width: 80px; height: 80px; border-radius: 20px; box-shadow: 0px 8px 16px rgba(0, 0, 0, 0.2);'/>
            <div style="margin-left: 15px;">
                <h1 style="font-size: 2.8em; font-family: -apple-system, BlinkMacSystemFont, sans-serif; color: #1D1D1F; 
                font-weight: bold; margin-bottom: 0;"> {model_name}</h1>
                <p style="font-size: 1.2em; color: #6e6e73; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 5px;">
                    📱 Grounded Mobile UI Understanding with Multimodal LLMs.<br>
                    A new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities.
                </p>
                <a href='https://huggingface.co./jadechoghari/Ferret-UI-Gemma2b' style='text-decoration: none;'>
                    <button style="background-color: #007aff; color: white; font-size: 1.2em; padding: 10px 20px; border-radius: 10px; border: none; margin-top: 10px; box-shadow: 0px 4px 12px rgba(0, 122, 255, 0.4); cursor: pointer;">
                        🤗 Try on Hugging Face
                    </button>
                </a>
            </div>
        </div>
    </div>
    <p style="font-size: 1.2em; color: #86868B; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 30px;">
        We release two Ferret-UI checkpoints, built on gemma-2b and Llama-3-8B models respectively, for public exploration. 🚀
    </p>
</div>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }]

# Set up UI components
image_input = gr.Image(label="Upload Image", type="filepath", height=350)
text_input = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
model_dropdown = gr.Dropdown(choices=[
    "jadechoghari/Ferret-UI-Gemma2b",
    "jadechoghari/Ferret-UI-Llama8b",
], label="Model Path", value="jadechoghari/Ferret-UI-Gemma2b")

bounding_box_input = gr.Textbox(placeholder="Optional bounding box (x1, y1, x2, y2)", label="Bounding Box (optional)")
# Adding Sliders for temperature, top_p, and max_new_tokens
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.2, label="Temperature")
top_p_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.7, label="Top P")
max_new_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=512, label="Max New Tokens")


chatbot = gr.Chatbot(label="Chat with Ferret-UI", height=400, show_copy_button=True, latex_delimiters=latex_delimiters_set, type="tuples")

with gr.Blocks(title=model_name, theme=gr.themes.Ocean()) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            image_input.render()
            text_input.render()
            model_dropdown.render()
            bounding_box_input.render()
            temperature_input.render()    # Render temperature input
            top_p_input.render()          # Render top_p input
            max_new_tokens_input.render()
            gr.Examples(
                examples=[
                    ["appstore_reminders.png", "Describe the image in details", "jadechoghari/Ferret-UI-Gemma2b", None],
                    ["appstore_reminders.png", "What's inside the selected region?", "jadechoghari/Ferret-UI-Gemma2b", "189, 906, 404, 970"],
                    ["appstore_reminders.png", "Where is the Game Tab?", "jadechoghari/Ferret-UI-Gemma2b", None],
                ],
                inputs=[image_input, text_input, model_dropdown, bounding_box_input]
            )
        with gr.Column(scale=7):
            chatbot.render()
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")

    send_click_event = send_btn.click(
        inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input], chatbot
    ).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
    submit_event = text_input.submit(
        inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input], chatbot
    ).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
    
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input])

demo.launch()