Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,820 Bytes
9b9e0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import sys
# sys.path.append("src")
import shutil
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import argparse
import yaml
import torch
from tqdm import tqdm
from pytorch_lightning.strategies.ddp import DDPStrategy
from qa_mdt.audioldm_train.modules.latent_diffusion.ddpm import LatentDiffusion
from torch.utils.data import WeightedRandomSampler
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from qa_mdt.audioldm_train.utilities.tools import (
listdir_nohidden,
get_restore_step,
copy_test_subset_data,
)
import wandb
from qa_mdt.audioldm_train.utilities.model_util import instantiate_from_config
import logging
logging.basicConfig(level=logging.WARNING)
def convert_path(path):
parts = path.decode().split("/")[-4:]
base = ""
result = "/".join(parts)
def print_on_rank0(msg):
if torch.distributed.get_rank() == 0:
print(msg)
def main(configs, config_yaml_path, exp_group_name, exp_name, perform_validation):
print("MAIN START")
# cpth = "/train20/intern/permanent/changli7/dataset_ptm/test_dataset/dataset/audioset/zip_audios/unbalanced_train_segments/unbalanced_train_segments_part9/Y7fmOlUlwoNg.wav"
# convert_path(cpth)
if "seed" in configs.keys():
seed_everything(configs["seed"])
else:
print("SEED EVERYTHING TO 0")
seed_everything(1234)
if "precision" in configs.keys():
torch.set_float32_matmul_precision(
configs["precision"]
) # highest, high, medium
log_path = configs["log_directory"]
batch_size = configs["model"]["params"]["batchsize"]
train_lmdb_path = configs["train_path"]["train_lmdb_path"]
train_key_path = [_ + '/data_key.key' for _ in train_lmdb_path]
val_lmdb_path = configs["val_path"]["val_lmdb_path"]
val_key_path = configs["val_path"]["val_key_path"]
#try:
mos_path = configs["mos_path"]
from qa_mdt.audioldm_train.utilities.data.hhhh import AudioDataset
dataset = AudioDataset(config=configs, lmdb_path=train_lmdb_path, key_path=train_key_path, mos_path=mos_path)
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=8,
pin_memory=True,
shuffle=True,
)
print(
"The length of the dataset is %s, the length of the dataloader is %s, the batchsize is %s"
% (len(dataset), len(loader), batch_size)
)
try:
val_dataset = AudioDataset(config=configs, lmdb_path=val_lmdb_path, key_path=val_key_path, mos_path=mos_path)
except:
val_dataset = AudioDataset(config=configs, lmdb_path=val_lmdb_path, key_path=val_key_path)
val_loader = DataLoader(
val_dataset,
batch_size=8,
)
# Copy test data
import os
test_data_subset_folder = os.path.join(
os.path.dirname(configs["log_directory"]),
"testset_data",
"tmp",
)
os.makedirs(test_data_subset_folder, exist_ok=True)
# copy to test:
# import pdb
# pdb.set_trace()
# for i in range(len(val_dataset.keys)):
# key_tmp = val_dataset.keys[i].decode()
# cmd = "cp {} {}".format(key_tmp, os.path.join(test_data_subset_folder))
# os.system(cmd)
try:
config_reload_from_ckpt = configs["reload_from_ckpt"]
except:
config_reload_from_ckpt = None
try:
limit_val_batches = configs["step"]["limit_val_batches"]
except:
limit_val_batches = None
validation_every_n_epochs = configs["step"]["validation_every_n_epochs"]
save_checkpoint_every_n_steps = configs["step"]["save_checkpoint_every_n_steps"]
max_steps = configs["step"]["max_steps"]
save_top_k = configs["step"]["save_top_k"]
checkpoint_path = os.path.join(log_path, exp_group_name, exp_name, "checkpoints")
wandb_path = os.path.join(log_path, exp_group_name, exp_name)
checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
monitor="global_step",
mode="max",
filename="checkpoint-fad-{val/frechet_inception_distance:.2f}-global_step={global_step:.0f}",
every_n_train_steps=save_checkpoint_every_n_steps,
save_top_k=save_top_k,
auto_insert_metric_name=False,
save_last=False,
)
os.makedirs(checkpoint_path, exist_ok=True)
# shutil.copy(config_yaml_path, wandb_path)
if len(os.listdir(checkpoint_path)) > 0:
print("Load checkpoint from path: %s" % checkpoint_path)
restore_step, n_step = get_restore_step(checkpoint_path)
resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
print("Resume from checkpoint", resume_from_checkpoint)
elif config_reload_from_ckpt is not None:
resume_from_checkpoint = config_reload_from_ckpt
print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
else:
print("Train from scratch")
resume_from_checkpoint = None
devices = torch.cuda.device_count()
latent_diffusion = instantiate_from_config(configs["model"])
latent_diffusion.set_log_dir(log_path, exp_group_name, exp_name)
wandb_logger = WandbLogger(
save_dir=wandb_path,
project=configs["project"],
config=configs,
name="%s/%s" % (exp_group_name, exp_name),
)
latent_diffusion.test_data_subset_path = test_data_subset_folder
print("==> Save checkpoint every %s steps" % save_checkpoint_every_n_steps)
print("==> Perform validation every %s epochs" % validation_every_n_epochs)
trainer = Trainer(
accelerator="auto",
devices="auto",
logger=wandb_logger,
max_steps=max_steps,
num_sanity_val_steps=1,
limit_val_batches=limit_val_batches,
check_val_every_n_epoch=validation_every_n_epochs,
strategy=DDPStrategy(find_unused_parameters=True),
gradient_clip_val=2.0,callbacks=[checkpoint_callback],num_nodes=1,
)
trainer.fit(latent_diffusion, loader, val_loader, ckpt_path=resume_from_checkpoint)
################################################################################################################
# if(resume_from_checkpoint is not None):
# ckpt = torch.load(resume_from_checkpoint)["state_dict"]
# key_not_in_model_state_dict = []
# size_mismatch_keys = []
# state_dict = latent_diffusion.state_dict()
# print("Filtering key for reloading:", resume_from_checkpoint)
# print("State dict key size:", len(list(state_dict.keys())), len(list(ckpt.keys())))
# for key in tqdm(list(ckpt.keys())):
# if(key not in state_dict.keys()):
# key_not_in_model_state_dict.append(key)
# del ckpt[key]
# continue
# if(state_dict[key].size() != ckpt[key].size()):
# del ckpt[key]
# size_mismatch_keys.append(key)
# if(len(key_not_in_model_state_dict) != 0 or len(size_mismatch_keys) != 0):
# print("⛳", end=" ")
# print("==> Warning: The following key in the checkpoint is not presented in the model:", key_not_in_model_state_dict)
# print("==> Warning: These keys have different size between checkpoint and current model: ", size_mismatch_keys)
# latent_diffusion.load_state_dict(ckpt, strict=False)
# if(perform_validation):
# trainer.validate(latent_diffusion, val_loader)
# trainer.fit(latent_diffusion, loader, val_loader)
################################################################################################################
if __name__ == "__main__":
print("ok")
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config_yaml",
type=str,
required=False,
help="path to config .yaml file",
)
parser.add_argument("--val", action="store_true")
args = parser.parse_args()
perform_validation = args.val
assert torch.cuda.is_available(), "CUDA is not available"
config_yaml = args.config_yaml
exp_name = os.path.basename(config_yaml.split(".")[0])
exp_group_name = os.path.basename(os.path.dirname(config_yaml))
config_yaml_path = os.path.join(config_yaml)
config_yaml = yaml.load(open(config_yaml_path, "r"), Loader=yaml.FullLoader)
if perform_validation:
config_yaml["model"]["params"]["cond_stage_config"][
"crossattn_audiomae_generated"
]["params"]["use_gt_mae_output"] = False
config_yaml["step"]["limit_val_batches"] = None
main(config_yaml, config_yaml_path, exp_group_name, exp_name, perform_validation)
|