Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,440 Bytes
9b9e0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import hashlib
import os
import urllib
import warnings
from tqdm import tqdm
_RN50 = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
)
_RN50_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
)
_RN101 = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
)
_RN101_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
)
_RN50x4 = dict(
openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
)
_RN50x16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
)
_RN50x64 = dict(
openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
)
_VITB32 = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
)
_VITB32_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
)
_VITB16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
)
_VITL14 = dict(
openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
)
_PRETRAINED = {
"RN50": _RN50,
"RN50-quickgelu": _RN50_quickgelu,
"RN101": _RN101,
"RN101-quickgelu": _RN101_quickgelu,
"RN50x4": _RN50x4,
"RN50x16": _RN50x16,
"ViT-B-32": _VITB32,
"ViT-B-32-quickgelu": _VITB32_quickgelu,
"ViT-B-16": _VITB16,
"ViT-L-14": _VITL14,
}
def list_pretrained(as_str: bool = False):
"""returns list of pretrained models
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
"""
return [
":".join([k, t]) if as_str else (k, t)
for k in _PRETRAINED.keys()
for t in _PRETRAINED[k].keys()
]
def list_pretrained_tag_models(tag: str):
"""return all models having the specified pretrain tag"""
models = []
for k in _PRETRAINED.keys():
if tag in _PRETRAINED[k]:
models.append(k)
return models
def list_pretrained_model_tags(model: str):
"""return all pretrain tags for the specified model architecture"""
tags = []
if model in _PRETRAINED:
tags.extend(_PRETRAINED[model].keys())
return tags
def get_pretrained_url(model: str, tag: str):
if model not in _PRETRAINED:
return ""
model_pretrained = _PRETRAINED[model]
if tag not in model_pretrained:
return ""
return model_pretrained[tag]
def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")):
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
if "openaipublic" in url:
expected_sha256 = url.split("/")[-2]
else:
expected_sha256 = ""
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if expected_sha256:
if (
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
== expected_sha256
):
return download_target
else:
warnings.warn(
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
)
else:
return download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")),
ncols=80,
unit="iB",
unit_scale=True,
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if (
expected_sha256
and hashlib.sha256(open(download_target, "rb").read()).hexdigest()
!= expected_sha256
):
raise RuntimeError(
f"Model has been downloaded but the SHA256 checksum does not not match"
)
return download_target
|