Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import keras
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
#title
|
9 |
-
st.title('Crossing Identifier')
|
10 |
-
|
11 |
-
#header
|
12 |
-
st.header('Choose whether you\'d like to enter a latitude/longitude coordinates, or upload a satellite image.')
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
state = st.session_state
|
17 |
-
|
18 |
-
if "dict_options" not in state:
|
19 |
-
state.dict_options = {}
|
20 |
-
|
21 |
-
if "submitted" not in state:
|
22 |
-
state.submitted = False
|
23 |
-
|
24 |
-
options = ["option1", "option2", "option3", "option4"]
|
25 |
-
|
26 |
-
col1, col2, col3 = st.columns(3)
|
27 |
-
|
28 |
-
with col1.form("my_form"):
|
29 |
-
new_country = st.text_input("New country")
|
30 |
-
submit_button = st.form_submit_button(
|
31 |
-
label="Add new country", on_click=lambda: state.update(submitted=True)
|
32 |
-
)
|
33 |
-
|
34 |
-
if state.submitted:
|
35 |
-
state.dict_options[new_country] = col2.multiselect(
|
36 |
-
f"Select the options you want for {new_country}",
|
37 |
-
options,
|
38 |
-
default=options[:2],
|
39 |
-
)
|
40 |
-
col2.write(state.dict_options)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
#divide app into two columns
|
45 |
-
col1, col2 = st.columns(2)
|
46 |
-
|
47 |
-
#load model and initialize image size required by model. uploaded images are resized to indicated size
|
48 |
-
loaded_model = keras.models.load_model("0.0008-0.92.keras")
|
49 |
-
img_height = 640
|
50 |
-
img_width = 640
|
51 |
-
|
52 |
-
#place to enter
|
53 |
-
|
54 |
-
#place to enter coordinates (or upload) and display image
|
55 |
-
with col1:
|
56 |
-
enter_coords = st.button("Enter Coordinates")
|
57 |
-
if enter_coords:
|
58 |
-
st.write(":smile:")
|
59 |
-
upload_img = st.button("Upload an Image")
|
60 |
-
if enter_coords:
|
61 |
-
st.write("ok")
|
62 |
-
|
63 |
-
st.header('Please upload a satellite image, or enter a latitude/longitude pair')
|
64 |
-
img_buffer = st.file_uploader("Upload a satellite image file (format: .png, .jpeg, or .jpg).",type=['png', 'jpeg', 'jpg'])
|
65 |
-
if img_buffer is not None:
|
66 |
-
st.image(img_buffer, use_column_width = True)
|
67 |
-
|
68 |
-
#place to display prediction result
|
69 |
-
with col2:
|
70 |
-
if img_buffer is not None:
|
71 |
-
st.header('Result')
|
72 |
-
img = Image.open(img_buffer).convert("RGB")
|
73 |
-
img_array = np.array(img)
|
74 |
-
batch_size = 1
|
75 |
-
img_array = np.reshape(img_array,[batch_size,img_height,img_width,3])
|
76 |
-
result = loaded_model.predict(img_array)
|
77 |
-
st.write("Your prediction is:")
|
78 |
-
st.write(f"{np.round(result[0][0]*100,decimals=2)}% chance of no crossing")
|
79 |
-
st.write(f"{np.round(result[0][1]*100,decimals=2)}% chance of at least one crossing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|