Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
from datasets import load_dataset, Image
|
3 |
-
from huggingface_hub import
|
4 |
-
pip install joblib
|
5 |
-
import joblib
|
6 |
-
|
7 |
-
REPO_ID = "jableable/road_project"
|
8 |
-
FILENAME = "best_model.keras"
|
9 |
-
|
10 |
-
model = joblib.load(
|
11 |
-
hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
|
12 |
-
)
|
13 |
|
14 |
x = st.slider('Select a value')
|
15 |
st.write(x, 'squared is', x * x)
|
16 |
|
17 |
-
loaded_model = keras.saving.load_model("best_model.keras")
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
dataset = load_dataset("beans", split="train")
|
|
|
1 |
import streamlit as st
|
2 |
from datasets import load_dataset, Image
|
3 |
+
from huggingface_hub import from_pretrained_keras
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
x = st.slider('Select a value')
|
6 |
st.write(x, 'squared is', x * x)
|
7 |
|
8 |
+
#loaded_model = keras.saving.load_model("best_model.keras")
|
9 |
|
10 |
+
model = from_pretrained_keras("best_model.keras")
|
11 |
+
prediction = model.predict(image)
|
12 |
+
prediction = tf.squeeze(tf.round(prediction))
|
13 |
+
print(f'The image is a {classes[(np.argmax(prediction))]}!')
|
14 |
|
15 |
|
16 |
dataset = load_dataset("beans", split="train")
|