Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline | |
title = "Code Generator" | |
description = "This is a space to convert english text to Python code using with [codeparrot-small-text-to-code](https://huggingface.co./codeparrot/codeparrot-small-text-to-code),\ | |
a code generation model for Python finetuned on [github-jupyter-text](https://huggingface.co./datasets/codeparrot/github-jupyter-text) a dataset of doctrings\ | |
and their Python code extracted from Jupyter notebooks." | |
example = [ | |
["Utility function to compute the accuracy of predictions using metric from sklearn", 65, 0.6, 42], | |
["Let's implement a function that computes the size of a file called filepath", 60, 0.6, 42], | |
["Let's implement bubble sort in a helper function:", 87, 0.6, 42], | |
] | |
# change model to the finetuned one | |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-text-to-code") | |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-text-to-code") | |
def make_doctring(gen_prompt): | |
return "\"\"\"\n" + gen_prompt + "\n\"\"\"\n\n" | |
def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42): | |
set_seed(seed) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
prompt = make_doctring(gen_prompt) | |
generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text'] | |
return generated_text | |
iface = gr.Interface( | |
fn=code_generation, | |
inputs=[ | |
gr.Textbox(lines=10, label="English instructions"), | |
gr.inputs.Slider( | |
minimum=8, | |
maximum=256, | |
step=1, | |
default=8, | |
label="Number of tokens to generate", | |
), | |
gr.inputs.Slider( | |
minimum=0, | |
maximum=2.5, | |
step=0.1, | |
default=0.6, | |
label="Temperature", | |
), | |
gr.inputs.Slider( | |
minimum=0, | |
maximum=1000, | |
step=1, | |
default=42, | |
label="Random seed to use for the generation" | |
) | |
], | |
outputs=gr.Textbox(label="Predicted Python code", lines=10), | |
examples=example, | |
layout="horizontal", | |
theme="peach", | |
description=description, | |
title=title | |
) | |
iface.launch() | |