Spaces:
Runtime error
Runtime error
added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
import neattext.functions as nfx
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# labels
|
8 |
+
labels = [
|
9 |
+
'bug',
|
10 |
+
'enhancement',
|
11 |
+
'question'
|
12 |
+
]
|
13 |
+
|
14 |
+
# Model path
|
15 |
+
# LOCAL
|
16 |
+
# MODEL_DIR = "./model/distil-bert-uncased-finetuned-github-issues/"
|
17 |
+
|
18 |
+
# REMOTE
|
19 |
+
MODEL_DIR = "ivanlau/distil-bert-uncased-finetuned-github-issues"
|
20 |
+
|
21 |
+
|
22 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
23 |
+
def load_model():
|
24 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
26 |
+
return model, tokenizer
|
27 |
+
|
28 |
+
# Helpers
|
29 |
+
reg_obj = re.compile(r'[^\u0000-\u007F]+', re.UNICODE)
|
30 |
+
def is_english_text(text):
|
31 |
+
return (False if reg_obj.match(text) else True)
|
32 |
+
|
33 |
+
# remove the stopwords, emojis from the text and convert it into lower case
|
34 |
+
def neatify_text(text):
|
35 |
+
text = str(text).lower()
|
36 |
+
text = nfx.remove_stopwords(text)
|
37 |
+
text = nfx.remove_emojis(text)
|
38 |
+
return text
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def main():
|
43 |
+
# st UI setting
|
44 |
+
st.set_page_config(
|
45 |
+
page_title="IntelliLabel",
|
46 |
+
page_icon="🏷",
|
47 |
+
layout="centered",
|
48 |
+
initial_sidebar_state="auto",
|
49 |
+
)
|
50 |
+
st.title("IntelliLabel")
|
51 |
+
st.write("IntelliLabel is a github issue classification app. It classifies issue into 3 categories (Bug, Enhancement, Question).")
|
52 |
+
|
53 |
+
# load model
|
54 |
+
with st.spinner("Downloading model (takes ~1 min)"):
|
55 |
+
model, tokenizer = load_model()
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
default_text = "Unable to run Speech2Text example in documentation"
|
60 |
+
|
61 |
+
text = st.text_area('Enter text here:', value=default_text)
|
62 |
+
submit = st.button('Predict 🏷')
|
63 |
+
|
64 |
+
|
65 |
+
if submit:
|
66 |
+
text = text.strip(" \n\t")
|
67 |
+
if is_english_text(text):
|
68 |
+
text = neatify_text(text)
|
69 |
+
tokenized_sentence = tokenizer(text, return_tensors='pt')
|
70 |
+
output = model(**tokenized_sentence)
|
71 |
+
predictions = torch.nn.functional.softmax(output.logits, dim=-1)
|
72 |
+
_, preds = torch.max(predictions, dim=-1)
|
73 |
+
predicted = labels[preds.item()]
|
74 |
+
|
75 |
+
predictions = predictions.tolist()[0]
|
76 |
+
c1, c2, c3 = st.columns(3)
|
77 |
+
c1.metric(label="Bug", value=round(predictions[0],3))
|
78 |
+
c2.metric(label="Enhancement", value=round(predictions[1],3))
|
79 |
+
c3.metric(label="Question", value=round(predictions[2],3))
|
80 |
+
|
81 |
+
st.info("Prediction")
|
82 |
+
st.write(predicted.capitalize())
|
83 |
+
|
84 |
+
else:
|
85 |
+
st.error(str("Please input english text."))
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
main()
|