Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,214 +2,81 @@ import logging
|
|
2 |
import os
|
3 |
import time
|
4 |
import uuid
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import soundfile as sf
|
8 |
-
|
9 |
from model import get_pretrained_model, language_to_models
|
10 |
|
11 |
title = "# Next-gen Kaldi: Text-to-speech (TTS)"
|
12 |
|
13 |
description = """
|
14 |
This space shows how to convert text to speech with Next-gen Kaldi.
|
15 |
-
|
16 |
It is running on CPU within a docker container provided by Hugging Face.
|
17 |
-
|
18 |
See more information by visiting the following links:
|
19 |
-
|
20 |
- <https://github.com/k2-fsa/sherpa-onnx>
|
21 |
-
|
22 |
-
If you want to
|
23 |
-
<https://k2-fsa.github.io/sherpa
|
24 |
-
|
25 |
-
If you want to use Android APKs, please see
|
26 |
-
<https://k2-fsa.github.io/sherpa/onnx/tts/apk.html>
|
27 |
-
|
28 |
-
If you want to use Android text-to-speech engine APKs, please see
|
29 |
-
<https://k2-fsa.github.io/sherpa/onnx/tts/apk-engine.html>
|
30 |
-
|
31 |
-
If you want to download an all-in-one exe for Windows, please see
|
32 |
-
<https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models>
|
33 |
"""
|
34 |
|
35 |
-
css = """
|
36 |
-
.result {display:flex;flex-direction:column}
|
37 |
-
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
38 |
-
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
39 |
-
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
40 |
-
"""
|
41 |
|
42 |
-
|
43 |
-
examples = [
|
44 |
-
["Portuguese", "csukuangfj/vits-mms-por", "Eu desejo uma versão simplificada para português.", 0, 1.0],
|
45 |
-
]
|
46 |
|
47 |
-
# Use only Portuguese as a language choice
|
48 |
language_choices = ["Portuguese"]
|
49 |
|
50 |
-
def update_model_dropdown(language
|
51 |
-
|
52 |
-
choices = language_to_models[language]
|
53 |
-
return gr.Dropdown(
|
54 |
-
choices=choices,
|
55 |
-
value=choices[0],
|
56 |
-
interactive=True,
|
57 |
-
)
|
58 |
-
|
59 |
-
raise ValueError(f"Unsupported language: {language}")
|
60 |
-
|
61 |
-
|
62 |
-
def build_html_output(s: str, style: str = "result_item_success"):
|
63 |
-
return f"""
|
64 |
-
<div class='result'>
|
65 |
-
<div class='result_item {style}'>
|
66 |
-
{s}
|
67 |
-
</div>
|
68 |
-
</div>
|
69 |
-
"""
|
70 |
|
|
|
|
|
71 |
|
72 |
-
def process(language
|
73 |
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
|
74 |
sid = int(sid)
|
75 |
tts = get_pretrained_model(repo_id, speed)
|
76 |
-
|
77 |
start = time.time()
|
78 |
audio = tts.generate(text, sid=sid)
|
79 |
end = time.time()
|
80 |
-
|
81 |
if len(audio.samples) == 0:
|
82 |
-
raise ValueError(
|
83 |
-
"Error in generating audios. Please read previous error messages."
|
84 |
-
)
|
85 |
-
|
86 |
duration = len(audio.samples) / audio.sample_rate
|
87 |
-
|
88 |
elapsed_seconds = end - start
|
89 |
rtf = elapsed_seconds / duration
|
90 |
-
|
91 |
-
info = f"""
|
92 |
-
Wave duration : {duration:.3f} s <br/>
|
93 |
-
Processing time: {elapsed_seconds:.3f} s <br/>
|
94 |
-
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
|
95 |
-
"""
|
96 |
-
|
97 |
logging.info(info)
|
98 |
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
|
99 |
-
|
100 |
-
filename =
|
101 |
-
filename = f"{filename}.wav"
|
102 |
-
sf.write(
|
103 |
-
filename,
|
104 |
-
audio.samples,
|
105 |
-
samplerate=audio.sample_rate,
|
106 |
-
subtype="PCM_16",
|
107 |
-
)
|
108 |
-
|
109 |
return filename, build_html_output(info)
|
110 |
|
111 |
-
|
112 |
demo = gr.Blocks(css=css)
|
113 |
|
114 |
with demo:
|
115 |
gr.Markdown(title)
|
116 |
-
|
117 |
-
|
118 |
-
language_radio =
|
119 |
-
label="Language",
|
120 |
-
choices=language_choices,
|
121 |
-
value=language_choices[0],
|
122 |
-
)
|
123 |
-
|
124 |
-
# Initialize model_dropdown with Portuguese models
|
125 |
-
model_dropdown = gr.Dropdown(
|
126 |
-
choices=language_to_models["Portuguese"],
|
127 |
-
label="Select a model",
|
128 |
-
value=language_to_models["Portuguese"][0],
|
129 |
-
)
|
130 |
-
|
131 |
-
# No need to update model_dropdown for a single language
|
132 |
|
133 |
with gr.Tabs():
|
134 |
with gr.TabItem("Please input your text"):
|
135 |
-
input_text = gr.Textbox(
|
136 |
-
|
137 |
-
|
138 |
-
lines=3,
|
139 |
-
placeholder="Please input your text here",
|
140 |
-
)
|
141 |
-
|
142 |
-
input_sid = gr.Textbox(
|
143 |
-
label="Speaker ID",
|
144 |
-
info="Speaker ID",
|
145 |
-
lines=1,
|
146 |
-
max_lines=1,
|
147 |
-
value="0",
|
148 |
-
placeholder="Speaker ID. Valid only for mult-speaker model",
|
149 |
-
)
|
150 |
-
|
151 |
-
input_speed = gr.Slider(
|
152 |
-
minimum=0.1,
|
153 |
-
maximum=10,
|
154 |
-
value=1,
|
155 |
-
step=0.1,
|
156 |
-
label="Speed (larger->faster; smaller->slower)",
|
157 |
-
)
|
158 |
-
|
159 |
input_button = gr.Button("Submit")
|
160 |
-
|
161 |
output_audio = gr.Audio(label="Output")
|
162 |
-
|
163 |
output_info = gr.HTML(label="Info")
|
|
|
164 |
|
165 |
-
|
166 |
-
examples=examples,
|
167 |
-
fn=process,
|
168 |
-
inputs=[
|
169 |
-
language_radio,
|
170 |
-
model_dropdown,
|
171 |
-
input_text,
|
172 |
-
input_sid,
|
173 |
-
input_speed,
|
174 |
-
],
|
175 |
-
outputs=[
|
176 |
-
output_audio,
|
177 |
-
output_info,
|
178 |
-
],
|
179 |
-
)
|
180 |
-
|
181 |
-
input_button.click(
|
182 |
-
process,
|
183 |
-
inputs=[
|
184 |
-
language_radio,
|
185 |
-
model_dropdown,
|
186 |
-
input_text,
|
187 |
-
input_sid,
|
188 |
-
input_speed,
|
189 |
-
],
|
190 |
-
outputs=[
|
191 |
-
output_audio,
|
192 |
-
output_info,
|
193 |
-
],
|
194 |
-
)
|
195 |
|
196 |
gr.Markdown(description)
|
197 |
|
198 |
-
|
199 |
def download_espeak_ng_data():
|
200 |
-
os.system(
|
201 |
-
"""
|
202 |
-
cd /tmp
|
203 |
-
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
|
204 |
-
tar xf espeak-ng-data.tar.bz2
|
205 |
-
"""
|
206 |
-
)
|
207 |
-
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
download_espeak_ng_data()
|
211 |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
212 |
-
|
213 |
logging.basicConfig(format=formatter, level=logging.INFO)
|
214 |
-
|
215 |
demo.launch()
|
|
|
2 |
import os
|
3 |
import time
|
4 |
import uuid
|
|
|
5 |
import gradio as gr
|
6 |
import soundfile as sf
|
|
|
7 |
from model import get_pretrained_model, language_to_models
|
8 |
|
9 |
title = "# Next-gen Kaldi: Text-to-speech (TTS)"
|
10 |
|
11 |
description = """
|
12 |
This space shows how to convert text to speech with Next-gen Kaldi.
|
|
|
13 |
It is running on CPU within a docker container provided by Hugging Face.
|
|
|
14 |
See more information by visiting the following links:
|
|
|
15 |
- <https://github.com/k2-fsa/sherpa-onnx>
|
16 |
+
If you want to deploy it locally, please see <https://k2-fsa.github.io/sherpa/>
|
17 |
+
If you want to use Android APKs, please see <https://k2-fsa.github.io/sherpa/onnx/tts/apk.html>
|
18 |
+
If you want to use Android text-to-speech engine APKs, please see <https://k2-fsa.github.io/sherpa/onnx/tts/apk-engine.html>
|
19 |
+
If you want to download an all-in-one exe for Windows, please see <https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
"""
|
21 |
|
22 |
+
css = """.result {display:flex;flex-direction:column}.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}.result_item_error {background-color:#ff7070;color:white;align-self:start}"""
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
examples = [["Portuguese", "csukuangfj/vits-mms-por", "Eu desejo uma versão simplificada para português.", 0, 1.0]]
|
|
|
|
|
|
|
25 |
|
|
|
26 |
language_choices = ["Portuguese"]
|
27 |
|
28 |
+
def update_model_dropdown(language):
|
29 |
+
return gr.Dropdown(choices=language_to_models.get(language, []), value=language_to_models.get(language, [""])[0], interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def build_html_output(s, style="result_item_success"):
|
32 |
+
return f"""<div class='result'><div class='result_item {style}'>{s}</div></div>"""
|
33 |
|
34 |
+
def process(language, repo_id, text, sid, speed):
|
35 |
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
|
36 |
sid = int(sid)
|
37 |
tts = get_pretrained_model(repo_id, speed)
|
|
|
38 |
start = time.time()
|
39 |
audio = tts.generate(text, sid=sid)
|
40 |
end = time.time()
|
|
|
41 |
if len(audio.samples) == 0:
|
42 |
+
raise ValueError("Error in generating audios. Please read previous error messages.")
|
|
|
|
|
|
|
43 |
duration = len(audio.samples) / audio.sample_rate
|
|
|
44 |
elapsed_seconds = end - start
|
45 |
rtf = elapsed_seconds / duration
|
46 |
+
info = f"""Wave duration : {duration:.3f} s <br/>Processing time: {elapsed_seconds:.3f} s <br/>RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
logging.info(info)
|
48 |
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
|
49 |
+
filename = str(uuid.uuid4()) + ".wav"
|
50 |
+
sf.write(filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return filename, build_html_output(info)
|
52 |
|
|
|
53 |
demo = gr.Blocks(css=css)
|
54 |
|
55 |
with demo:
|
56 |
gr.Markdown(title)
|
57 |
+
language_radio = gr.Radio(label="Language", choices=language_choices, value=language_choices[0])
|
58 |
+
model_dropdown = gr.Dropdown(choices=language_to_models["Portuguese"], label="Select a model", value=language_to_models["Portuguese"][0])
|
59 |
+
language_radio.change(update_model_dropdown, inputs=language_radio, outputs=model_dropdown)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
with gr.Tabs():
|
62 |
with gr.TabItem("Please input your text"):
|
63 |
+
input_text = gr.Textbox(label="Input text", info="Your text", lines=3, placeholder="Please input your text here")
|
64 |
+
input_sid = gr.Textbox(label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model")
|
65 |
+
input_speed = gr.Slider(minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
input_button = gr.Button("Submit")
|
|
|
67 |
output_audio = gr.Audio(label="Output")
|
|
|
68 |
output_info = gr.HTML(label="Info")
|
69 |
+
gr.Examples(examples=examples, fn=process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info])
|
70 |
|
71 |
+
input_button.click(process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
gr.Markdown(description)
|
74 |
|
|
|
75 |
def download_espeak_ng_data():
|
76 |
+
os.system("""cd /tmp; wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2; tar xf espeak-ng-data.tar.bz2""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
download_espeak_ng_data()
|
80 |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
81 |
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
82 |
demo.launch()
|