Spaces:
Running
Running
File size: 11,921 Bytes
7e9eac8 ebb01fc 7e9eac8 ebb01fc 7e9eac8 0969649 7e9eac8 40de727 4cd7d34 40de727 588b97f f7215c7 bd7955f 4cd7d34 bd7955f 4cd7d34 dd6a80b 4cd7d34 7e9eac8 ebb01fc 7e9eac8 23e7dca 7e9eac8 ebb01fc 7e9eac8 0969649 7e9eac8 23e7dca 7e9eac8 d5f48a5 51a3cc9 407c586 51a3cc9 7552061 51a3cc9 d5f48a5 15402cf d5f48a5 7e9eac8 ebb01fc 7e9eac8 ebb01fc 0c75795 7e9eac8 ebb01fc 3344c9b 9c1cd2f 4826b58 7e9eac8 073ea05 407c586 7e9eac8 4fb6891 7e9eac8 51a3cc9 ead5f56 bddfec7 73ba5d9 cbfcc94 51a3cc9 4fb6891 51a3cc9 83bc222 7e9eac8 dcb3ca8 4930465 7552061 48dc914 7552061 4930465 f7215c7 dcb3ca8 f7215c7 dcb3ca8 f7215c7 dcb3ca8 f7215c7 4930465 7e9eac8 3344c9b f7215c7 dcb3ca8 3344c9b 9c1cd2f 71288ec d5f48a5 71288ec 9c1cd2f 7e9eac8 4826b58 34a7ff6 d5f48a5 4826b58 ae43e39 4826b58 7e9eac8 407c586 40de727 9c1cd2f 4826b58 7e9eac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import lru_cache
import sherpa_onnx
from huggingface_hub import hf_hub_download
def get_file(
repo_id: str,
filename: str,
subfolder: str = ".",
) -> str:
model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return model_filename
@lru_cache(maxsize=10)
def _get_vits_vctk(repo_id: str, speed: float) -> sherpa_onnx.OfflineTts:
assert repo_id == "csukuangfj/vits-vctk"
model = get_file(
repo_id=repo_id,
filename="vits-vctk.onnx",
subfolder=".",
)
lexicon = get_file(
repo_id=repo_id,
filename="lexicon.txt",
subfolder=".",
)
tokens = get_file(
repo_id=repo_id,
filename="tokens.txt",
subfolder=".",
)
tts_config = sherpa_onnx.OfflineTtsConfig(
model=sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=model,
lexicon=lexicon,
tokens=tokens,
length_scale=1.0 / speed,
),
provider="cpu",
debug=True,
num_threads=2,
)
)
tts = sherpa_onnx.OfflineTts(tts_config)
return tts
@lru_cache(maxsize=10)
def _get_vits_ljs(repo_id: str, speed: float) -> sherpa_onnx.OfflineTts:
assert repo_id == "csukuangfj/vits-ljs"
model = get_file(
repo_id=repo_id,
filename="vits-ljs.onnx",
subfolder=".",
)
lexicon = get_file(
repo_id=repo_id,
filename="lexicon.txt",
subfolder=".",
)
tokens = get_file(
repo_id=repo_id,
filename="tokens.txt",
subfolder=".",
)
tts_config = sherpa_onnx.OfflineTtsConfig(
model=sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=model,
lexicon=lexicon,
tokens=tokens,
length_scale=1.0 / speed,
),
provider="cpu",
debug=True,
num_threads=2,
)
)
tts = sherpa_onnx.OfflineTts(tts_config)
return tts
@lru_cache(maxsize=10)
def _get_vits_piper(repo_id: str, speed: float) -> sherpa_onnx.OfflineTts:
n = len("vits-piper-")
name = repo_id.split("/")[1][n:]
model = get_file(
repo_id=repo_id,
filename=f"{name}.onnx",
subfolder=".",
)
tokens = get_file(
repo_id=repo_id,
filename="tokens.txt",
subfolder=".",
)
tts_config = sherpa_onnx.OfflineTtsConfig(
model=sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=model,
lexicon="",
data_dir="/tmp/espeak-ng-data",
tokens=tokens,
length_scale=1.0 / speed,
),
provider="cpu",
debug=True,
num_threads=2,
)
)
tts = sherpa_onnx.OfflineTts(tts_config)
return tts
@lru_cache(maxsize=10)
def _get_vits_zh_aishell3(repo_id: str, speed: float) -> sherpa_onnx.OfflineTts:
assert repo_id == "csukuangfj/vits-zh-aishell3"
model = get_file(
repo_id=repo_id,
filename="vits-aishell3.onnx",
subfolder=".",
)
lexicon = get_file(
repo_id=repo_id,
filename="lexicon.txt",
subfolder=".",
)
tokens = get_file(
repo_id=repo_id,
filename="tokens.txt",
subfolder=".",
)
rule_fst = get_file(
repo_id=repo_id,
filename="rule.fst",
subfolder=".",
)
tts_config = sherpa_onnx.OfflineTtsConfig(
model=sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=model,
lexicon=lexicon,
tokens=tokens,
length_scale=1.0 / speed,
),
provider="cpu",
debug=True,
num_threads=2,
),
rule_fsts=rule_fst,
)
tts = sherpa_onnx.OfflineTts(tts_config)
return tts
@lru_cache(maxsize=10)
def _get_vits_hf(repo_id: str, speed: float) -> sherpa_onnx.OfflineTts:
if "fanchen" in repo_id or "vits-cantonese-hf-xiaomaiiwn" in repo_id:
model = repo_id.split("/")[-1]
elif "coqui" in repo_id:
model = "model"
else:
model = repo_id.split("-")[-1]
model = get_file(
repo_id=repo_id,
filename=f"{model}.onnx",
subfolder=".",
)
lexicon = get_file(
repo_id=repo_id,
filename="lexicon.txt",
subfolder=".",
)
tokens = get_file(
repo_id=repo_id,
filename="tokens.txt",
subfolder=".",
)
if "coqui" not in repo_id:
rule_fst = get_file(
repo_id=repo_id,
filename="rule.fst",
subfolder=".",
)
else:
rule_fst = ""
tts_config = sherpa_onnx.OfflineTtsConfig(
model=sherpa_onnx.OfflineTtsModelConfig(
vits=sherpa_onnx.OfflineTtsVitsModelConfig(
model=model,
lexicon=lexicon,
tokens=tokens,
length_scale=1.0 / speed,
),
provider="cpu",
debug=True,
num_threads=2,
),
rule_fsts=rule_fst,
)
tts = sherpa_onnx.OfflineTts(tts_config)
return tts
@lru_cache(maxsize=10)
def get_pretrained_model(repo_id: str, speed: float) -> sherpa_onnx.OfflineTts:
if repo_id in chinese_models:
return chinese_models[repo_id](repo_id, speed)
if repo_id in cantonese_models:
return cantonese_models[repo_id](repo_id, speed)
elif repo_id in english_models:
return english_models[repo_id](repo_id, speed)
elif repo_id in german_models:
return german_models[repo_id](repo_id, speed)
elif repo_id in spanish_models:
return spanish_models[repo_id](repo_id, speed)
elif repo_id in french_models:
return french_models[repo_id](repo_id, speed)
else:
raise ValueError(f"Unsupported repo_id: {repo_id}")
cantonese_models = {
"csukuangfj/vits-cantonese-hf-xiaomaiiwn": _get_vits_hf,
}
chinese_models = {
"csukuangfj/vits-zh-hf-theresa": _get_vits_hf,
"csukuangfj/vits-zh-hf-eula": _get_vits_hf,
"csukuangfj/vits-zh-hf-echo": _get_vits_hf,
"csukuangfj/vits-zh-hf-bronya": _get_vits_hf,
"csukuangfj/vits-zh-aishell3": _get_vits_zh_aishell3,
"csukuangfj/vits-zh-hf-fanchen-wnj": _get_vits_hf,
"csukuangfj/vits-zh-hf-fanchen-C": _get_vits_hf,
"csukuangfj/vits-zh-hf-fanchen-ZhiHuiLaoZhe": _get_vits_hf,
"csukuangfj/vits-zh-hf-fanchen-ZhiHuiLaoZhe_new": _get_vits_hf,
"csukuangfj/vits-zh-hf-fanchen-unity": _get_vits_hf,
"csukuangfj/vits-zh-hf-doom": _get_vits_hf,
"csukuangfj/vits-zh-hf-zenyatta": _get_vits_hf, # 804
"csukuangfj/vits-zh-hf-abyssinvoker": _get_vits_hf,
"csukuangfj/vits-zh-hf-keqing": _get_vits_hf,
# "csukuangfj/vits-piper-zh_CN-huayan-x_low": _get_vits_piper,
# "csukuangfj/vits-piper-zh_CN-huayan-medium": _get_vits_piper,
}
english_models = {
"csukuangfj/vits-vctk": _get_vits_vctk, # 109 speakers
"csukuangfj/vits-ljs": _get_vits_ljs,
# coqui-ai
"csukuangfj/vits-coqui-en-vctk": _get_vits_hf,
"csukuangfj/vits-coqui-en-ljspeech": _get_vits_hf,
"csukuangfj/vits-coqui-en-ljspeech-neon": _get_vits_hf,
# piper, US
"csukuangfj/vits-piper-en_US-amy-low": _get_vits_piper,
"csukuangfj/vits-piper-en_US-amy-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_US-arctic-medium": _get_vits_piper, # 18 speakers
"csukuangfj/vits-piper-en_US-danny-low": _get_vits_piper,
"csukuangfj/vits-piper-en_US-hfc_male-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_US-joe-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_US-kathleen-low": _get_vits_piper,
"csukuangfj/vits-piper-en_US-kusal-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_US-l2arctic-medium": _get_vits_piper, # 24 speakers
"csukuangfj/vits-piper-en_US-lessac-low": _get_vits_piper,
"csukuangfj/vits-piper-en_US-lessac-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_US-lessac-high": _get_vits_piper,
"csukuangfj/vits-piper-en_US-libritts-high": _get_vits_piper, # 904 speakers
"csukuangfj/vits-piper-en_US-libritts_r-medium": _get_vits_piper, # 904 speakers
"csukuangfj/vits-piper-en_US-ryan-low": _get_vits_piper,
"csukuangfj/vits-piper-en_US-ryan-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_US-ryan-high": _get_vits_piper,
# piper, GB
"csukuangfj/vits-piper-en_GB-alan-low": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-alan-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-alba-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-jenny_dioco-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-northern_english_male-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-semaine-medium": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-southern_english_female-low": _get_vits_piper,
"csukuangfj/vits-piper-en_GB-vctk-medium": _get_vits_piper,
}
german_models = {
"csukuangfj/vits-piper-de_DE-eva_k-x_low": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-karlsson-low": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-kerstin-low": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-pavoque-low": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-ramona-low": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-thorsten-low": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-thorsten-medium": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-thorsten-high": _get_vits_piper,
"csukuangfj/vits-piper-de_DE-thorsten_emotional-medium": _get_vits_piper, # 8 speakers
}
spanish_models = {
"csukuangfj/vits-piper-es_ES-carlfm-x_low": _get_vits_piper,
"csukuangfj/vits-piper-es_ES-davefx-medium": _get_vits_piper,
"csukuangfj/vits-piper-es_ES-mls_10246-low": _get_vits_piper,
"csukuangfj/vits-piper-es_ES-mls_9972-low": _get_vits_piper,
"csukuangfj/vits-piper-es_ES-sharvard-medium": _get_vits_piper, # 2 speakers
"csukuangfj/vits-piper-es_MX-ald-medium": _get_vits_piper,
}
french_models = {
# "csukuangfj/vits-piper-fr_FR-gilles-low": _get_vits_piper,
# "csukuangfj/vits-piper-fr_FR-mls_1840-low": _get_vits_piper,
"csukuangfj/vits-piper-fr_FR-upmc-medium": _get_vits_piper, # 2 speakers, 0-femal, 1-male
"csukuangfj/vits-piper-fr_FR-siwis-low": _get_vits_piper, # female
"csukuangfj/vits-piper-fr_FR-siwis-medium": _get_vits_piper,
"csukuangfj/vits-piper-fr_FR-tjiho-model1": _get_vits_piper,
"csukuangfj/vits-piper-fr_FR-tjiho-model2": _get_vits_piper,
"csukuangfj/vits-piper-fr_FR-tjiho-model3": _get_vits_piper,
}
language_to_models = {
"English": list(english_models.keys()),
"Chinese (Mandarin, 普通话)": list(chinese_models.keys()),
"Cantonese (粤语)": list(cantonese_models.keys()),
"German": list(german_models.keys()),
"Spanish": list(spanish_models.keys()),
"French": list(french_models.keys()),
}
|