Spaces:
Sleeping
Sleeping
File size: 11,214 Bytes
94e17b8 1e4288a 94e17b8 0308e6e 1e4288a 0308e6e 1e4288a 0308e6e 1e4288a 31e6eb8 1e4288a 94e17b8 1e4288a 94e17b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import re
import time
import requests
import json
import spacy
import string
from textblob import TextBlob
import torch
from transformers import BertTokenizer, BertModel
from sklearn.metrics.pairwise import cosine_similarity
Bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
Bert_model = BertModel.from_pretrained('bert-base-uncased')
def generate_prompt(context, question, history=None):
# history_summary = ""
# if history:
# for user_query, bot_response in history[-3:]:
# history_summary += f"User: {user_query}\n Assistant: {bot_response}\n"
if context:
prompt_context = context
else:
prompt_context = "No context provided."
prompt = f"""
<s>[INST] <<SYS>> You are a helpful, respectful and honest assistant. Always answer as helpfully as possible based on the context, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content, and dont mention that you used the provided context .<</SYS>>
Context \n :
{prompt_context}
[INST] {question} [/INST]
Response:
"""
return prompt
# ==============================================================================================================================================
def llama(prompt):
url = "https://api.edenai.run/v2/text/generation"
payload = {
"providers": "meta/llama2-13b-chat-v1",
"response_as_dict": True,
"attributes_as_list": False,
"show_original_response": False,
"temperature": 0,
"max_tokens": 256,
"text": prompt
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiMmYzMDE3MTEtOTJmNy00ZDU3LTg4N2MtNjU2MmE5MTU5MWZhIiwidHlwZSI6ImFwaV90b2tlbiJ9.vWvooRwxmr-uY1c61V97uugyDGpXmZGjX8oCFWKCUeM"
}
response = requests.post(url, json=payload, headers=headers)
result = response.json()
return result['meta/llama2-13b-chat-v1']['generated_text']
# ==============================================================================================================================================
def question_answering(question):
"""
Sends a question answering request to the EdenAI API.
Args:
question: The question to be answered.
Returns:
The answer provided by the LLM model (string),
or None if an error occurs.
"""
headers = {"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiMmYzMDE3MTEtOTJmNy00ZDU3LTg4N2MtNjU2MmE5MTU5MWZhIiwidHlwZSI6ImFwaV90b2tlbiJ9.vWvooRwxmr-uY1c61V97uugyDGpXmZGjX8oCFWKCUeM"}
url = "https://api.edenai.run/v2/text/question_answer"
payload = {
"providers": "openai",
"texts": [
"Linux is a family of open-source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991, by Linus Torvalds.",
"Just like Windows, iOS, and Mac OS, Linux is an operating system. "
],
'question': question,
"examples": [["What is human life expectancy in the United States?", "78 years."]],
"fallback_providers": ""
}
try:
response = requests.post(url, json=payload, headers=headers)
result = json.loads(response.text)
return result['openai']['answers'] if result['openai']['answers'] else None
except Exception as e:
print(f"Error communicating with LLM model: {e}")
return None
# ==============================================================================================================================================
def normalize_text(s):
"""Removing stopwords and punctuation, and standardizing whitespace are all typical text processing steps."""
nlp = spacy.load("en_core_web_sm")
def remove_stop(text):
return " ".join([word for word in text.split() if not nlp.vocab[word].is_stop])
def lemma(text):
return " ".join([word.lemma_ for word in nlp(text)])
def white_space_fix(text):
return " ".join(text.split()) # this function removes leading and trailing whitespaces and condenses all other whitespaces to a single space
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(lemma(remove_stop(remove_punc(lower(s)))))
# ==============================================================================================================================================
def get_relevance_docs(documents_score, threshold):
"""
Calculate relevance scores for the retrieved documents based on their relevance to the correct answer.
Parameters:
documents_score (list): List of scores for the retrieved documents.
threshold (float): Threshold value to determine relevance.
Returns:
list: List of relevance scores for the retrieved documents.
"""
relevance_scores = []
for score in documents_score:
if score >= threshold:
relevance_scores.append(1) # Relevant document
else:
relevance_scores.append(0) # Non-relevant document
return relevance_scores
# ==============================================================================================================================================
def get_docs_by_indices(docs, indices):
"""
Retrieve document contexts from a list of indexed documents based on provided indices.
Args:
- docs (list): List of documents.
- indices (list): List of indices corresponding to the desired documents.
Returns:
- list: List of document contexts corresponding to the provided indices.
"""
return [docs[index] for index in indices]
# ==============================================================================================================================================
def split_text(text):
return text.split(":")[1].strip() if ":" in text else text
def query_rewriter(original_query):
timing=0
if not needs_rewriting(original_query):
return original_query
try:
# headers = {"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiMTA5MTBlYTktOWYwOC00N2E2LTg3MDktOTlhODExZjkwZDA2IiwidHlwZSI6ImFwaV90b2tlbiJ9._wiFq518MhMRvG8waWbg_7Eogf50isgyzqh3e2ypvOU"}
headers = {"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiMmYzMDE3MTEtOTJmNy00ZDU3LTg4N2MtNjU2MmE5MTU5MWZhIiwidHlwZSI6ImFwaV90b2tlbiJ9.vWvooRwxmr-uY1c61V97uugyDGpXmZGjX8oCFWKCUeM"}
url = "https://api.edenai.run/v2/text/code_generation"
payload = {
"providers": "openai",
# "instruction": "You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:Original Question: Which position did Knox Cunningham hold from May 1955 to Apr 1956? Stepback Question: Which positions have Knox Cunning- ham held in his career? , Now this Question: Who was the spouse of Anna Karina from 1968 to 1974?",
"prompt": "",
"model": "gpt-3.5-turbo",
"instruction": f"""You are an expert in document retrieval and search optimization.
Your task is to rewrite the following query to enhance its relevance and usefulness for retrieving accurate and
comprehensive information from a database or search engine. Ensure the rewritten query is clear, specific,
and free of ambiguities. Here are a few examples:
Original Query: who is Joe Biden? Rewritten Query: Provide detailed information about Joe Biden, including his political career, achievements, current position, and a history of his personal and professional life?
Original Query: {original_query}""" ,
"temperature": 0.6,
"max_tokens": 512,
"fallback_providers": " ['openai']"
}
response = requests.post(url, json=payload, headers=headers , timeout=20)
print("response", response)
result = json.loads(response.text)
print("result", result)
except:
print("Error in API call")
return original_query
try:
print("query revised", split_text(result['openai']['generated_text']))
rewrited_query = split_text(result['openai']['generated_text'])
except:
return original_query
if validate_revised_query(original_query ,rewrited_query):
return result['openai']['generated_text']
else:
return original_query
def score_query(query):
score = 0
salutations = ['hi', 'hello', 'hey', 'dear', 'greetings', 'good morning', 'good afternoon', 'good evening', 'good night', 'good day', 'howdy', 'what\'s up', 'sup', 'yo', 'hiya', 'hi there', 'hello there', 'hey there', 'hiya there', 'howdy there', 'what\'s up there', 'sup there', 'yo there', ]
if any(salutation in query.lower() for salutation in salutations):
return score
# Criterion 1: Length of Query
if len(query.split()) < 3 or len(query.split()) > 15:
score += 1
question_pattern = r'\b(who|what|where|when|why|how|which|whom|whose)\b'
if not re.search(question_pattern, query.lower()) :
score += 2
# Criterion 2: Spelling Errors
blob = TextBlob(query)
if len(blob.correct().words) != len(blob.words):
score += 1
# Criterion 3: Grammar Issues (simplified)
if blob.correct() != blob:
score += 1
# Criterion 4: Ambiguity (simplified example)
ambiguous_terms = ['these', 'such', 'something', 'one', 'those', 'whatchamacallit', 'doohickey', 'whosit', 'matter', 'aspect', 'case', 'concept', 'issue', 'point', 'area', 'facet''data', 'information', 'people', 'stuff', 'business', 'thingy', 'whatnot', 'deal']
if any(term in query.lower() for term in ambiguous_terms):
score += 1
# Criterion 5: Complexity
if len(set(query.split())) < len(query.split()) * 0.5:
score += 1
return score
def needs_rewriting(query, threshold=2):
print(f"Scoring query: '{query}'")
score = score_query(query)
print(f"Score: {score}")
return score > threshold
def get_bert_embeddings(text):
inputs = Bert_tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = Bert_model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze()
return embeddings
def compute_semantic_similarity(text1, text2):
embeddings1 = get_bert_embeddings(text1)
embeddings2 = get_bert_embeddings(text2)
similarity = cosine_similarity(embeddings1.reshape(1, -1), embeddings2.reshape(1, -1))
return similarity[0][0]
def validate_revised_query(original_query, revised_query, threshold=0.6):
similarity = compute_semantic_similarity(original_query, revised_query)
print(f"Similarity: {similarity}")
return similarity > threshold
|