Spaces:
Sleeping
Sleeping
ishaan-mital
commited on
Commit
·
4dd0f5b
1
Parent(s):
f585ede
added embedding model and vector DB
Browse files- .gitignore +1 -0
- app.py +115 -4
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app.py
CHANGED
@@ -1,7 +1,118 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
import gradio as gr
|
3 |
+
import os
|
4 |
+
import pinecone
|
5 |
+
import time
|
6 |
+
from torch import cuda
|
7 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
8 |
+
import PyPDF2
|
9 |
+
import re
|
10 |
+
from langchain.vectorstores import Pinecone
|
11 |
+
import os
|
12 |
|
13 |
+
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
|
14 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
15 |
|
16 |
+
embed_model = HuggingFaceEmbeddings(
|
17 |
+
model_name=embed_model_id,
|
18 |
+
model_kwargs={'device': device},
|
19 |
+
encode_kwargs={'device': device, 'batch_size': 32}
|
20 |
+
)
|
21 |
+
|
22 |
+
# get API key from app.pinecone.io and environment from console
|
23 |
+
pinecone.init(
|
24 |
+
api_key=os.environ.get('PINECONE_API_KEY'),
|
25 |
+
environment=os.environ.get('PINECONE_ENVIRONMENT')
|
26 |
+
)
|
27 |
+
docs = [
|
28 |
+
"this is one document",
|
29 |
+
"and another document"
|
30 |
+
]
|
31 |
+
|
32 |
+
embeddings = embed_model.embed_documents(docs)
|
33 |
+
|
34 |
+
index_name = 'llama-rag'
|
35 |
+
|
36 |
+
if index_name not in pinecone.list_indexes():
|
37 |
+
pinecone.create_index(
|
38 |
+
index_name,
|
39 |
+
dimension=len(embeddings[0]),
|
40 |
+
metric='cosine'
|
41 |
+
)
|
42 |
+
# wait for index to finish initialization
|
43 |
+
while not pinecone.describe_index(index_name).status['ready']:
|
44 |
+
time.sleep(1)
|
45 |
+
|
46 |
+
index = pinecone.Index(index_name)
|
47 |
+
index.describe_index_stats()
|
48 |
+
|
49 |
+
# def extract_text_from_pdf(pdf_path):
|
50 |
+
# pdf_file = open(pdf_path, 'rb')
|
51 |
+
# pdf_reader = PyPDF2.PdfReader(pdf_file)
|
52 |
+
|
53 |
+
# text = ""
|
54 |
+
# for page_number in range(len(pdf_reader.pages)):
|
55 |
+
# page = pdf_reader.pages[page_number]
|
56 |
+
# text += page.extract_text()
|
57 |
+
|
58 |
+
# pdf_file.close()
|
59 |
+
# return text
|
60 |
+
|
61 |
+
# def identify_sections(text):
|
62 |
+
# # Assuming sections start with "Chapter" headings
|
63 |
+
# sections = re.split(r'\n1+', text)
|
64 |
+
# sections = [section.strip() for section in sections if section.strip()]
|
65 |
+
# return sections
|
66 |
+
|
67 |
+
# pdf_files = ['leph101.pdf', 'leph102.pdf','leph103.pdf','leph104.pdf','leph105.pdf','leph106.pdf','leph107.pdf','leph108.pdf'] # Add more file names as needed
|
68 |
+
|
69 |
+
# book_sections=[]
|
70 |
+
# for pdf_file in pdf_files:
|
71 |
+
# pdf_path = f'/content/{pdf_file}'
|
72 |
+
# book_text = extract_text_from_pdf(pdf_path)
|
73 |
+
# book_sections.append(identify_sections(book_text))
|
74 |
+
# print(len(book_sections))
|
75 |
+
# # Now you can organize and store the data as needed
|
76 |
+
|
77 |
+
# import pandas as pd
|
78 |
+
|
79 |
+
# data = pd.DataFrame({
|
80 |
+
# 'ID': range(len(book_sections)), # Sequential IDs
|
81 |
+
# 'Text': book_sections
|
82 |
+
# })
|
83 |
+
# print(data)
|
84 |
+
|
85 |
+
# batch_size = 4
|
86 |
+
|
87 |
+
# for i in range(0, len(data), batch_size):
|
88 |
+
# i_end = min(len(data), i+batch_size)
|
89 |
+
# batch = data.iloc[i:i_end]
|
90 |
+
# ids = [f"{x['ID']}" for i, x in batch.iterrows()]
|
91 |
+
# texts = [x['Text'] for i, x in batch.iterrows()]
|
92 |
+
# embeds = embed_model.embed_documents(texts)
|
93 |
+
# # get metadata to store in Pinecone
|
94 |
+
# metadata = [
|
95 |
+
# {'text': x['Text'],
|
96 |
+
# 'ID': x['ID']} for i, x in batch.iterrows()
|
97 |
+
# ]
|
98 |
+
# # add to Pinecone
|
99 |
+
# index.upsert(vectors=zip(ids, embeds,metadata))
|
100 |
+
|
101 |
+
text_field = 'text' # field in metadata that contains text content
|
102 |
+
|
103 |
+
vectorstore = Pinecone(
|
104 |
+
index, embed_model.embed_query, text_field
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
def question(query):
|
109 |
+
return vectorstore.similarity_search(
|
110 |
+
query, # the search query
|
111 |
+
k=3 # returns top 3 most relevant chunks of text
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
demo = gr.Interface(fn=question, inputs="text", outputs="text")
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
demo.launch()
|