File size: 8,327 Bytes
79d2379 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import xgboost as xgb
from sklearn.kernel_ridge import KernelRidge
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
os.environ["OMP_MAX_ACTIVE_LEVELS"] = "1"
import models.fm4m as fm4m
# Function to create model based on user input
def _create_model(
model_name, max_depth=None, n_estimators=None, alpha=None, degree=None, kernel=None
):
if model_name == "XGBClassifier":
model = xgb.XGBClassifier(
objective='binary:logistic',
eval_metric='auc',
max_depth=max_depth,
n_estimators=n_estimators,
alpha=alpha,
)
elif model_name == "SVR":
model = SVR(degree=degree, kernel=kernel)
elif model_name == "Kernel Ridge":
model = KernelRidge(alpha=alpha, degree=degree, kernel=kernel)
elif model_name == "Linear Regression":
model = LinearRegression()
elif model_name == "Default - Auto":
return "Default Settings"
else:
return "Model not supported."
return f"{model_name} * {model.get_params()}"
# Function to handle model creation based on input parameters
def create_downstream_model(model_name, max_depth, n_estimators, alpha, degree, kernel):
if model_name == "XGBClassifier":
return _create_model(
model_name,
max_depth=max_depth,
n_estimators=n_estimators,
alpha=alpha,
)
elif model_name == "SVR":
return _create_model(model_name, degree=degree, kernel=kernel)
elif model_name == "Kernel Ridge":
return _create_model(model_name, alpha=alpha, degree=degree, kernel=kernel)
elif model_name == "Linear Regression":
return _create_model(model_name)
elif model_name == "Default - Auto":
return _create_model(model_name)
# Function to display evaluation score
def display_eval(selected_models, dataset, task_type, downstream, fusion_type, state):
result = None
try:
downstream_model = downstream.split("*")[0].lstrip()
downstream_model = downstream_model.rstrip()
hyp_param = downstream.split("*")[-1].lstrip()
hyp_param = hyp_param.rstrip()
hyp_param = hyp_param.replace("nan", "float('nan')")
params = eval(hyp_param)
except:
downstream_model = downstream.split("*")[0].lstrip()
downstream_model = downstream_model.rstrip()
params = None
try:
if not selected_models:
return "Please select at least one enabled model."
if len(selected_models) > 1:
if task_type == "Classification":
if downstream_model == "Default Settings":
downstream_model = "DefaultClassifier"
params = None
(
result,
state["roc_auc"],
state["fpr"],
state["tpr"],
state["x_batch"],
state["y_batch"],
) = fm4m.multi_modal(
model_list=selected_models,
downstream_model=downstream_model,
params=params,
dataset=dataset,
)
elif task_type == "Regression":
if downstream_model == "Default Settings":
downstream_model = "DefaultRegressor"
params = None
(
result,
state["RMSE"],
state["y_batch_test"],
state["y_prob"],
state["x_batch"],
state["y_batch"],
) = fm4m.multi_modal(
model_list=selected_models,
downstream_model=downstream_model,
params=params,
dataset=dataset,
)
else:
if task_type == "Classification":
if downstream_model == "Default Settings":
downstream_model = "DefaultClassifier"
params = None
(
result,
state["roc_auc"],
state["fpr"],
state["tpr"],
state["x_batch"],
state["y_batch"],
) = fm4m.single_modal(
model=selected_models[0],
downstream_model=downstream_model,
params=params,
dataset=dataset,
)
elif task_type == "Regression":
if downstream_model == "Default Settings":
downstream_model = "DefaultRegressor"
params = None
(
result,
state["RMSE"],
state["y_batch_test"],
state["y_prob"],
state["x_batch"],
state["y_batch"],
) = fm4m.single_modal(
model=selected_models[0],
downstream_model=downstream_model,
params=params,
dataset=dataset,
)
except Exception as e:
return f"An error occurred: {e}"
return result or "Data & Model Setting is incorrect"
# Function to handle plot display
def display_plot(plot_type, state):
fig, ax = plt.subplots()
if plot_type == "Latent Space":
x_batch, y_batch = state.get("x_batch"), state.get("y_batch")
ax.set_title("T-SNE Plot")
class_0 = x_batch
class_1 = y_batch
plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1')
plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0')
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
ax.set_title('Dataset Distribution')
elif plot_type == "ROC-AUC":
roc_auc, fpr, tpr = state.get("roc_auc"), state.get("fpr"), state.get("tpr")
ax.set_title("ROC-AUC Curve")
try:
ax.plot(
fpr,
tpr,
color='darkorange',
lw=2,
label=f'ROC curve (area = {roc_auc:.4f})',
)
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
except:
pass
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title('Receiver Operating Characteristic')
ax.legend(loc='lower right')
elif plot_type == "Parity Plot":
RMSE, y_batch_test, y_prob = (
state.get("RMSE"),
state.get("y_batch_test"),
state.get("y_prob"),
)
ax.set_title("Parity plot")
# change format
try:
print(y_batch_test)
print(y_prob)
y_batch_test = np.array(y_batch_test, dtype=float)
y_prob = np.array(y_prob, dtype=float)
ax.scatter(
y_batch_test,
y_prob,
color="blue",
label=f"Predicted vs Actual (RMSE: {RMSE:.4f})",
)
min_val = min(min(y_batch_test), min(y_prob))
max_val = max(max(y_batch_test), max(y_prob))
ax.plot([min_val, max_val], [min_val, max_val], 'r-')
except:
y_batch_test = []
y_prob = []
RMSE = None
print(y_batch_test)
print(y_prob)
ax.set_xlabel('Actual Values')
ax.set_ylabel('Predicted Values')
ax.legend(loc='lower right')
return fig
# Function to handle evaluation and logging
def evaluate_and_log(models, dataset, task_type, eval_output, state):
task_dic = {'Classification': 'CLS', 'Regression': 'RGR'}
result = eval_output.replace(" Score", "")
new_entry = {
"Selected Models": str(models),
"Dataset": dataset,
"Task": task_dic[task_type],
"Result": result,
}
new_entry_df = pd.DataFrame([new_entry])
state["log_df"] = pd.concat([new_entry_df, state["log_df"]])
return state["log_df"]
|