Spaces:
Runtime error
Runtime error
File size: 6,587 Bytes
721f65d c3e3b63 60cd313 c3e3b63 60cd313 6b7f4a6 60cd313 89cc465 290651e 9a56e9e 290651e a404e9a 6b7f4a6 a404e9a 6b7f4a6 89cc465 60cd313 746b6f9 73bf59e c89b2ab 73bf59e 5343f2a 12d8e9a 6885efd 12d8e9a 60cd313 746b6f9 c4d69e3 5343f2a 64ef80f c4d69e3 d5bb5ed 2facd79 c4d69e3 60cd313 c4d69e3 64ef80f c4d69e3 60cd313 e8002b4 c4d69e3 aeeac3a 60cd313 89cc465 60cd313 89cc465 721f65d 5b7d34c 721f65d 60cd313 89cc465 60cd313 6b7f4a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import json
import os
from io import BytesIO
import gradio as gr
from huggingface_hub import upload_file
default_question = """
We're going to use the <a href="https://huggingface.co./datasets/wikitext" target="_blank"><code>wikitext (link)</a></code> dataset with the <code><a href="https://huggingface.co./distilbert-base-cased" target="_blank">distilbert-base-cased (link)</a></code> model checkpoint.
<br/><br/>
Start by loading the <code>wikitext-2-raw-v1</code> version of that dataset, and take the 11th example (index 10) of the <code>train</code> split.<br/>
We'll tokenize this using the appropriate tokenizer, and we'll mask the sixth token (index 5) the sequence.
<br/><br/>
When using the <code>distilbert-base-cased</code> checkpoint to unmask that (sixth token, index 5) token, what is the most probable predicted token (please provide the decoded token, and not the ID)?
<br/>
<br/>
Tips:
<br/>
- You might find the <a href="https://huggingface.co./docs/transformers/index" target="_blank">transformers docs (link)</a> useful.
<br/>
- You might find the <a href="https://huggingface.co./docs/datasets/index" target="_blank">datasets docs (link)</a> useful.
<br/>
- You might also be interested in the <a href="https://huggingface.co./course" target="_blank">Hugging Face course (link)</a>.
"""
skops_question = """
1. Create a python environment[1] and install `scikit-learn` version `1.0` in that environment.
<br/>
2. Using that environment, create a `LogisticRegression` model[2] and fit it on the Iris dataset[3].
<br/>
3. Save the trained model using `pickle`[4] or `joblib`[5].
<br/>
4. Create a second environment, and install `scikit-learn` version `1.1` in it.
<br/>
5. Try loading the model you saved in step 3 in this second environment.
<br/>
<br/>
Question:
<br/>
Is there a warning or error you receive while trying to load the model? If yes, what exactly is it.
<br/>
<br/>
References
<br/>
- [1] You can use any tool you want to create the environment. Two of the options are:
<br/>
- `venv`: https://docs.python.org/3/library/venv.html
<br/>
- `mamba`: https://github.com/mamba-org/mamba
<br/>
- [2] `LogisticRegression` API guide: https://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html
<br/>
- [3] `load_iris` API guide: https://scikit-learn.org/dev/modules/generated/sklearn.datasets.load_iris.html
<br/>
- [4] `pickle`: https://docs.python.org/3/library/pickle.html
<br/>
- [5] - `joblib`: https://joblib.readthedocs.io/en/latest/
"""
code_question = """
You are probing your code generation model on a program synthesis benchmark and
1 out of 4 the candidate solutions produced by your model pass the unit tests of a coding challenge.
<br/>
<br/>
What’s the pass@2 metric (in percent) as introduced in the
Codex paper (see section 2.1)?
<br/>
<br/>
References
<br/>
- Codex paper: https://arxiv.org/abs/2107.03374
"""
evaluate_question = """
Use the `evaluate` library to compute the BLEU score of the model generation `"Evaluate is a library to evaluate Machine Learning models"` and the reference solution `"Evaluate is a library to evaluate ML models"`. Round the result to two digits after the comma.
<br/>
<br/>
References
<br/>
- `evaluate` library: https://huggingface.co./docs/evaluate/index
- BLEU score: https://en.wikipedia.org/wiki/BLEU
"""
embodied_question = """
We are going to use <a href="https://github.com/huggingface/simulate"> Simulate </a> to create a basic RL environment.
<br/><br/>
Instructions:
<br/>
pip install simulate
<br/>
create a scene with the unity engine
<br/>
add a box to the scene at position [0, 0, 1], add a camera named "cam" at default position
<br/>
show the scene, step the scene once
<br/>
what is the mean pixel value from the frames from "cam".
<br/><br/>
For some resources, you may want to check out:
* <a href="https://huggingface.co./docs/simulate/main/en/quicktour"> Simulate quick start </a> for installation,
* <a href="https://huggingface.co./docs/simulate/main/en/tutorials/running_the_simulation#running-the-simulation" simulation stepping <a> for running the simulation.
"""
internships = {
'Accelerate': default_question,
'Skops & Scikit-Learn': skops_question,
'Diffusion distillation': default_question,
"Evaluate": evaluate_question,
"Speech": default_question,
"ML for Code/Code Generation": code_question,
"Model forgetting": default_question,
"Multimodal AI": default_question,
"OCR": default_question,
"Efficient video pretraining": default_question,
"Retrieval augmentation as prompting": default_question,
"Embodied AI": embodied_question,
"Toolkit for detecting distribution shift/Robustness": default_question,
"Social impact evaluations": default_question,
"Gradio as an ecosystem": default_question,
"Benchmarking transformers on various AI hardware accelerators": default_question,
"AI Art Tooling Residency": default_question,
"Datasets for Large Language Models": default_question,
"Fast Distributed Training Framework": default_question,
}
with gr.Blocks() as demo:
gr.Markdown(
"""
# Internship introduction
Please select the internship you would like to apply to and answer the question asked in the Answer box.
"""
)
internship_choice = gr.Dropdown(label='Internship', choices=list(internships.keys()))
with gr.Column(visible=False) as details_col:
summary = gr.HTML(label='Question')
details = gr.Textbox(label="Answer")
username = gr.Textbox(label="Hugging Face Username")
comment = gr.Textbox(label="Any comment?")
generate_btn = gr.Button("Submit")
output = gr.Label()
def filter_species(species):
return gr.Label.update(
internships[species]
), gr.update(visible=True)
internship_choice.change(filter_species, internship_choice, [summary, details_col])
def on_click(_details, _username, _internship_choice, _comment):
response = {'response': _details, "internship": _internship_choice, "comment": _comment}
upload_file(
path_or_fileobj=BytesIO(bytes(json.dumps(response), 'utf-8')),
path_in_repo=_username,
repo_id='internships/internships-2023',
repo_type='dataset',
token=os.environ['HF_TOKEN']
)
return f"Submitted: '{_details}' for user '{_username}'"
generate_btn.click(on_click, inputs=[details, username, internship_choice, comment], outputs=[output])
if __name__ == "__main__":
demo.launch()
|