Spaces:
Running
on
Zero
Running
on
Zero
Upload ./vocos/heads.py with huggingface_hub
Browse files- vocos/heads.py +170 -0
vocos/heads.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
|
6 |
+
|
7 |
+
from vocos.spectral_ops import IMDCT, ISTFT
|
8 |
+
from vocos.modules import symexp
|
9 |
+
|
10 |
+
|
11 |
+
class FourierHead(nn.Module):
|
12 |
+
"""Base class for inverse fourier modules."""
|
13 |
+
|
14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
18 |
+
L is the sequence length, and H denotes the model dimension.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
22 |
+
"""
|
23 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
24 |
+
|
25 |
+
|
26 |
+
class ISTFTHead(FourierHead):
|
27 |
+
"""
|
28 |
+
ISTFT Head module for predicting STFT complex coefficients.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
dim (int): Hidden dimension of the model.
|
32 |
+
n_fft (int): Size of Fourier transform.
|
33 |
+
hop_length (int): The distance between neighboring sliding window frames, which should align with
|
34 |
+
the resolution of the input features.
|
35 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same", ckpt: Optional[str] = None):
|
39 |
+
super().__init__()
|
40 |
+
out_dim = n_fft + 2
|
41 |
+
self.out = torch.nn.Linear(dim, out_dim)
|
42 |
+
self.istft = ISTFT(n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding)
|
43 |
+
# load the checkpoint if provided
|
44 |
+
if ckpt is not None:
|
45 |
+
params = torch.load(ckpt, map_location="cpu")
|
46 |
+
# find head.out.weight and head.out.bias in the checkpoint
|
47 |
+
out_weight = params["head.out.weight"]
|
48 |
+
out_bias = params["head.out.bias"]
|
49 |
+
|
50 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
51 |
+
"""
|
52 |
+
Forward pass of the ISTFTHead module.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
56 |
+
L is the sequence length, and H denotes the model dimension.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
60 |
+
"""
|
61 |
+
x = self.out(x).transpose(1, 2)
|
62 |
+
mag, p = x.chunk(2, dim=1)
|
63 |
+
mag = torch.exp(mag)
|
64 |
+
mag = torch.clip(mag, max=1e2) # safeguard to prevent excessively large magnitudes
|
65 |
+
# wrapping happens here. These two lines produce real and imaginary value
|
66 |
+
x = torch.cos(p)
|
67 |
+
y = torch.sin(p)
|
68 |
+
# recalculating phase here does not produce anything new
|
69 |
+
# only costs time
|
70 |
+
# phase = torch.atan2(y, x)
|
71 |
+
# S = mag * torch.exp(phase * 1j)
|
72 |
+
# better directly produce the complex value
|
73 |
+
S = mag * (x + 1j * y)
|
74 |
+
audio = self.istft(S)
|
75 |
+
return audio
|
76 |
+
|
77 |
+
|
78 |
+
class IMDCTSymExpHead(FourierHead):
|
79 |
+
"""
|
80 |
+
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
|
81 |
+
|
82 |
+
Args:
|
83 |
+
dim (int): Hidden dimension of the model.
|
84 |
+
mdct_frame_len (int): Length of the MDCT frame.
|
85 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
86 |
+
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
|
87 |
+
based on perceptual scaling. Defaults to None.
|
88 |
+
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
dim: int,
|
94 |
+
mdct_frame_len: int,
|
95 |
+
padding: str = "same",
|
96 |
+
sample_rate: Optional[int] = None,
|
97 |
+
clip_audio: bool = False,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
out_dim = mdct_frame_len // 2
|
101 |
+
self.out = nn.Linear(dim, out_dim)
|
102 |
+
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
103 |
+
self.clip_audio = clip_audio
|
104 |
+
|
105 |
+
if sample_rate is not None:
|
106 |
+
# optionally init the last layer following mel-scale
|
107 |
+
m_max = _hz_to_mel(sample_rate // 2)
|
108 |
+
m_pts = torch.linspace(0, m_max, out_dim)
|
109 |
+
f_pts = _mel_to_hz(m_pts)
|
110 |
+
scale = 1 - (f_pts / f_pts.max())
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
self.out.weight.mul_(scale.view(-1, 1))
|
114 |
+
|
115 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
116 |
+
"""
|
117 |
+
Forward pass of the IMDCTSymExpHead module.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
121 |
+
L is the sequence length, and H denotes the model dimension.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
125 |
+
"""
|
126 |
+
x = self.out(x)
|
127 |
+
x = symexp(x)
|
128 |
+
x = torch.clip(x, min=-1e2, max=1e2) # safeguard to prevent excessively large magnitudes
|
129 |
+
audio = self.imdct(x)
|
130 |
+
if self.clip_audio:
|
131 |
+
audio = torch.clip(x, min=-1.0, max=1.0)
|
132 |
+
|
133 |
+
return audio
|
134 |
+
|
135 |
+
|
136 |
+
class IMDCTCosHead(FourierHead):
|
137 |
+
"""
|
138 |
+
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)
|
139 |
+
|
140 |
+
Args:
|
141 |
+
dim (int): Hidden dimension of the model.
|
142 |
+
mdct_frame_len (int): Length of the MDCT frame.
|
143 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
144 |
+
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self, dim: int, mdct_frame_len: int, padding: str = "same", clip_audio: bool = False):
|
148 |
+
super().__init__()
|
149 |
+
self.clip_audio = clip_audio
|
150 |
+
self.out = nn.Linear(dim, mdct_frame_len)
|
151 |
+
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
152 |
+
|
153 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
154 |
+
"""
|
155 |
+
Forward pass of the IMDCTCosHead module.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
159 |
+
L is the sequence length, and H denotes the model dimension.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
163 |
+
"""
|
164 |
+
x = self.out(x)
|
165 |
+
m, p = x.chunk(2, dim=2)
|
166 |
+
m = torch.exp(m).clip(max=1e2) # safeguard to prevent excessively large magnitudes
|
167 |
+
audio = self.imdct(m * torch.cos(p))
|
168 |
+
if self.clip_audio:
|
169 |
+
audio = torch.clip(x, min=-1.0, max=1.0)
|
170 |
+
return audio
|