Spaces:
Running
on
Zero
Running
on
Zero
Upload ./vocos/feature_extractors.py with huggingface_hub
Browse files- vocos/feature_extractors.py +120 -0
vocos/feature_extractors.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
# from encodec import EncodecModel
|
6 |
+
from torch import nn
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from vocos.modules import safe_log
|
9 |
+
# from vocos.xcodec.models.soundstream_hubert_new import SoundStream
|
10 |
+
|
11 |
+
class FeatureExtractor(nn.Module):
|
12 |
+
"""Base class for feature extractors."""
|
13 |
+
|
14 |
+
def forward(self, audio: torch.Tensor, **kwargs) -> torch.Tensor:
|
15 |
+
"""
|
16 |
+
Extract features from the given audio.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
audio (Tensor): Input audio waveform.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
Tensor: Extracted features of shape (B, C, L), where B is the batch size,
|
23 |
+
C denotes output features, and L is the sequence length.
|
24 |
+
"""
|
25 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
26 |
+
|
27 |
+
|
28 |
+
class MelSpectrogramFeatures(FeatureExtractor):
|
29 |
+
def __init__(self, sample_rate=24000, n_fft=1024, hop_length=256, n_mels=100, padding="center"):
|
30 |
+
super().__init__()
|
31 |
+
if padding not in ["center", "same"]:
|
32 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
33 |
+
self.padding = padding
|
34 |
+
self.mel_spec = torchaudio.transforms.MelSpectrogram(
|
35 |
+
sample_rate=sample_rate,
|
36 |
+
n_fft=n_fft,
|
37 |
+
hop_length=hop_length,
|
38 |
+
n_mels=n_mels,
|
39 |
+
center=padding == "center",
|
40 |
+
power=1,
|
41 |
+
)
|
42 |
+
|
43 |
+
def forward(self, audio, **kwargs):
|
44 |
+
if self.padding == "same":
|
45 |
+
pad = self.mel_spec.win_length - self.mel_spec.hop_length
|
46 |
+
audio = torch.nn.functional.pad(audio, (pad // 2, pad // 2), mode="reflect")
|
47 |
+
mel = self.mel_spec(audio)
|
48 |
+
features = safe_log(mel)
|
49 |
+
return features
|
50 |
+
|
51 |
+
|
52 |
+
class EncodecFeatures(FeatureExtractor):
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
encodec_model: str = "encodec_24khz",
|
56 |
+
bandwidths: List[float] = [1.5, 3.0, 6.0, 12.0],
|
57 |
+
train_codebooks: bool = False,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
if encodec_model == "encodec_24khz":
|
61 |
+
encodec = EncodecModel.encodec_model_24khz
|
62 |
+
elif encodec_model == "encodec_48khz":
|
63 |
+
encodec = EncodecModel.encodec_model_48khz
|
64 |
+
else:
|
65 |
+
raise ValueError(
|
66 |
+
f"Unsupported encodec_model: {encodec_model}. Supported options are 'encodec_24khz' and 'encodec_48khz'."
|
67 |
+
)
|
68 |
+
self.encodec = encodec(pretrained=True)
|
69 |
+
for param in self.encodec.parameters():
|
70 |
+
param.requires_grad = False
|
71 |
+
self.num_q = self.encodec.quantizer.get_num_quantizers_for_bandwidth(
|
72 |
+
self.encodec.frame_rate, bandwidth=max(bandwidths)
|
73 |
+
)
|
74 |
+
codebook_weights = torch.cat([vq.codebook for vq in self.encodec.quantizer.vq.layers[: self.num_q]], dim=0)
|
75 |
+
self.codebook_weights = torch.nn.Parameter(codebook_weights, requires_grad=train_codebooks)
|
76 |
+
self.bandwidths = bandwidths
|
77 |
+
|
78 |
+
@torch.no_grad()
|
79 |
+
def get_encodec_codes(self, audio):
|
80 |
+
audio = audio.unsqueeze(1)
|
81 |
+
emb = self.encodec.encoder(audio)
|
82 |
+
codes = self.encodec.quantizer.encode(emb, self.encodec.frame_rate, self.encodec.bandwidth)
|
83 |
+
return codes
|
84 |
+
|
85 |
+
def forward(self, audio: torch.Tensor, **kwargs):
|
86 |
+
bandwidth_id = kwargs.get("bandwidth_id")
|
87 |
+
if bandwidth_id is None:
|
88 |
+
raise ValueError("The 'bandwidth_id' argument is required")
|
89 |
+
self.encodec.eval() # Force eval mode as Pytorch Lightning automatically sets child modules to training mode
|
90 |
+
self.encodec.set_target_bandwidth(self.bandwidths[bandwidth_id])
|
91 |
+
codes = self.get_encodec_codes(audio)
|
92 |
+
# Instead of summing in the loop, it stores subsequent VQ dictionaries in a single `self.codebook_weights`
|
93 |
+
# with offsets given by the number of bins, and finally summed in a vectorized operation.
|
94 |
+
offsets = torch.arange(
|
95 |
+
0, self.encodec.quantizer.bins * len(codes), self.encodec.quantizer.bins, device=audio.device
|
96 |
+
)
|
97 |
+
embeddings_idxs = codes + offsets.view(-1, 1, 1)
|
98 |
+
features = torch.nn.functional.embedding(embeddings_idxs, self.codebook_weights).sum(dim=0)
|
99 |
+
return features.transpose(1, 2)
|
100 |
+
|
101 |
+
class xCodecFeatures(FeatureExtractor):
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
config: str,
|
105 |
+
ckpt: str,
|
106 |
+
):
|
107 |
+
super().__init__()
|
108 |
+
self.config = OmegaConf.load(config)
|
109 |
+
self.model = eval(self.config.generator.name)(**self.config.generator.config)
|
110 |
+
parameter_dict = torch.load(ckpt, map_location='cpu')
|
111 |
+
self.model.load_state_dict(parameter_dict['codec_model'])
|
112 |
+
self.resampler = torchaudio.transforms.Resample(orig_freq=44100, new_freq=16000).to('cuda')
|
113 |
+
self.model.eval()
|
114 |
+
|
115 |
+
def forward(self, audio: torch.Tensor):
|
116 |
+
# resample audio from 44100 to 16000
|
117 |
+
audio = self.resampler(audio)
|
118 |
+
with torch.no_grad():
|
119 |
+
codes = self.model.encode(audio, target_bw=6)
|
120 |
+
return codes
|