KingNish's picture
Upload ./vocos/models.py with huggingface_hub
b4511c9 verified
raw
history blame
5.86 kB
from typing import Optional
import torch
from torch import nn
from torch.nn.utils import weight_norm
from vocos.modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm
class Backbone(nn.Module):
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
C denotes output features, and L is the sequence length.
Returns:
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
and H denotes the model dimension.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class VocosBackbone(Backbone):
"""
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
num_layers (int): Number of ConvNeXtBlock layers.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional model. Defaults to None.
"""
def __init__(
self,
input_channels: int,
dim: int,
intermediate_dim: int,
num_layers: int,
layer_scale_init_value: Optional[float] = None,
adanorm_num_embeddings: Optional[int] = None,
ckpt: Optional[str] = None,
):
super().__init__()
self.input_channels = input_channels
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
self.adanorm = adanorm_num_embeddings is not None
if adanorm_num_embeddings:
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
else:
self.norm = nn.LayerNorm(dim, eps=1e-6)
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
self.convnext = nn.ModuleList(
[
ConvNeXtBlock(
dim=dim,
intermediate_dim=intermediate_dim,
layer_scale_init_value=layer_scale_init_value,
adanorm_num_embeddings=adanorm_num_embeddings,
)
for _ in range(num_layers)
]
)
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
# print out self's state dict
if ckpt is not None:
state_dict = torch.load(ckpt, map_location='cpu')
state_dict = self._fuzzy_load_state_dict(state_dict)
self.load_state_dict(state_dict)
self.apply(self._init_weights)
def _fuzzy_load_state_dict(self, state_dict):
def _get_key(key):
return key.split('backbone.')[-1]
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('backbone'):
if v.shape == self.state_dict()[_get_key(k)].shape:
new_state_dict[_get_key(k)] = v
else:
new_state_dict[_get_key(k)] = self.state_dict()[_get_key(k)]
nn.init.trunc_normal_(new_state_dict[_get_key(k)], std=0.02)
nn.init.constant_(new_state_dict[_get_key(k)], 0)
return new_state_dict
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
bandwidth_id = kwargs.get('bandwidth_id', None)
x = self.embed(x)
if self.adanorm:
assert bandwidth_id is not None
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
else:
x = self.norm(x.transpose(1, 2))
x = x.transpose(1, 2)
for conv_block in self.convnext:
x = conv_block(x, cond_embedding_id=bandwidth_id)
x = self.final_layer_norm(x.transpose(1, 2))
return x
class VocosResNetBackbone(Backbone):
"""
Vocos backbone module built with ResBlocks.
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
num_blocks (int): Number of ResBlock1 blocks.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
"""
def __init__(
self, input_channels, dim, num_blocks, layer_scale_init_value=None,
):
super().__init__()
self.input_channels = input_channels
self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1))
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
self.resnet = nn.Sequential(
*[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)]
)
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
x = self.embed(x)
x = self.resnet(x)
x = x.transpose(1, 2)
return x
if __name__ == '__main__':
# Define the model
model = VocosBackbone(
input_channels=1024,
dim=512,
intermediate_dim=1536,
num_layers=8,
ckpt="/root/OpenMusicVoco/vocos/pretrained.pth"
)
# Generate some random input
x = torch.randn(2, 1024, 100)
# Forward pass
output = model(x)
print(output.shape) # torch.Size([2, 100, 512])