Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch | |
from torch import nn | |
from torch.nn.utils import weight_norm | |
from vocos.modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm | |
class Backbone(nn.Module): | |
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
""" | |
Args: | |
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, | |
C denotes output features, and L is the sequence length. | |
Returns: | |
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, | |
and H denotes the model dimension. | |
""" | |
raise NotImplementedError("Subclasses must implement the forward method.") | |
class VocosBackbone(Backbone): | |
""" | |
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. | |
num_layers (int): Number of ConvNeXtBlock layers. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional model. Defaults to None. | |
""" | |
def __init__( | |
self, | |
input_channels: int, | |
dim: int, | |
intermediate_dim: int, | |
num_layers: int, | |
layer_scale_init_value: Optional[float] = None, | |
adanorm_num_embeddings: Optional[int] = None, | |
ckpt: Optional[str] = None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) | |
self.adanorm = adanorm_num_embeddings is not None | |
if adanorm_num_embeddings: | |
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) | |
else: | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_layers | |
self.convnext = nn.ModuleList( | |
[ | |
ConvNeXtBlock( | |
dim=dim, | |
intermediate_dim=intermediate_dim, | |
layer_scale_init_value=layer_scale_init_value, | |
adanorm_num_embeddings=adanorm_num_embeddings, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) | |
# print out self's state dict | |
if ckpt is not None: | |
state_dict = torch.load(ckpt, map_location='cpu') | |
state_dict = self._fuzzy_load_state_dict(state_dict) | |
self.load_state_dict(state_dict) | |
self.apply(self._init_weights) | |
def _fuzzy_load_state_dict(self, state_dict): | |
def _get_key(key): | |
return key.split('backbone.')[-1] | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
if k.startswith('backbone'): | |
if v.shape == self.state_dict()[_get_key(k)].shape: | |
new_state_dict[_get_key(k)] = v | |
else: | |
new_state_dict[_get_key(k)] = self.state_dict()[_get_key(k)] | |
nn.init.trunc_normal_(new_state_dict[_get_key(k)], std=0.02) | |
nn.init.constant_(new_state_dict[_get_key(k)], 0) | |
return new_state_dict | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
bandwidth_id = kwargs.get('bandwidth_id', None) | |
x = self.embed(x) | |
if self.adanorm: | |
assert bandwidth_id is not None | |
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) | |
else: | |
x = self.norm(x.transpose(1, 2)) | |
x = x.transpose(1, 2) | |
for conv_block in self.convnext: | |
x = conv_block(x, cond_embedding_id=bandwidth_id) | |
x = self.final_layer_norm(x.transpose(1, 2)) | |
return x | |
class VocosResNetBackbone(Backbone): | |
""" | |
Vocos backbone module built with ResBlocks. | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
num_blocks (int): Number of ResBlock1 blocks. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. | |
""" | |
def __init__( | |
self, input_channels, dim, num_blocks, layer_scale_init_value=None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 | |
self.resnet = nn.Sequential( | |
*[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)] | |
) | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
x = self.embed(x) | |
x = self.resnet(x) | |
x = x.transpose(1, 2) | |
return x | |
if __name__ == '__main__': | |
# Define the model | |
model = VocosBackbone( | |
input_channels=1024, | |
dim=512, | |
intermediate_dim=1536, | |
num_layers=8, | |
ckpt="/root/OpenMusicVoco/vocos/pretrained.pth" | |
) | |
# Generate some random input | |
x = torch.randn(2, 1024, 100) | |
# Forward pass | |
output = model(x) | |
print(output.shape) # torch.Size([2, 100, 512]) |