Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Tuple | |
import torch | |
import torchaudio | |
from torch import nn | |
from vocos.modules import safe_log | |
class MelSpecReconstructionLoss(nn.Module): | |
""" | |
L1 distance between the mel-scaled magnitude spectrograms of the ground truth sample and the generated sample | |
""" | |
def __init__( | |
self, sample_rate: int = 24000, n_fft: int = 1024, hop_length: int = 256, n_mels: int = 100, | |
): | |
super().__init__() | |
self.mel_spec = torchaudio.transforms.MelSpectrogram( | |
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, center=True, power=1, | |
) | |
def forward(self, y_hat, y) -> torch.Tensor: | |
""" | |
Args: | |
y_hat (Tensor): Predicted audio waveform. | |
y (Tensor): Ground truth audio waveform. | |
Returns: | |
Tensor: L1 loss between the mel-scaled magnitude spectrograms. | |
""" | |
mel_hat = safe_log(self.mel_spec(y_hat)) | |
mel = safe_log(self.mel_spec(y)) | |
loss = torch.nn.functional.l1_loss(mel, mel_hat) | |
return loss | |
class GeneratorLoss(nn.Module): | |
""" | |
Generator Loss module. Calculates the loss for the generator based on discriminator outputs. | |
""" | |
def forward(self, disc_outputs: List[torch.Tensor]) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
""" | |
Args: | |
disc_outputs (List[Tensor]): List of discriminator outputs. | |
Returns: | |
Tuple[Tensor, List[Tensor]]: Tuple containing the total loss and a list of loss values from | |
the sub-discriminators | |
""" | |
loss = torch.zeros(1, device=disc_outputs[0].device, dtype=disc_outputs[0].dtype) | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean(torch.clamp(1 - dg, min=0)) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
class DiscriminatorLoss(nn.Module): | |
""" | |
Discriminator Loss module. Calculates the loss for the discriminator based on real and generated outputs. | |
""" | |
def forward( | |
self, disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor] | |
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]: | |
""" | |
Args: | |
disc_real_outputs (List[Tensor]): List of discriminator outputs for real samples. | |
disc_generated_outputs (List[Tensor]): List of discriminator outputs for generated samples. | |
Returns: | |
Tuple[Tensor, List[Tensor], List[Tensor]]: A tuple containing the total loss, a list of loss values from | |
the sub-discriminators for real outputs, and a list of | |
loss values for generated outputs. | |
""" | |
loss = torch.zeros(1, device=disc_real_outputs[0].device, dtype=disc_real_outputs[0].dtype) | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean(torch.clamp(1 - dr, min=0)) | |
g_loss = torch.mean(torch.clamp(1 + dg, min=0)) | |
loss += r_loss + g_loss | |
r_losses.append(r_loss) | |
g_losses.append(g_loss) | |
return loss, r_losses, g_losses | |
class FeatureMatchingLoss(nn.Module): | |
""" | |
Feature Matching Loss module. Calculates the feature matching loss between feature maps of the sub-discriminators. | |
""" | |
def forward(self, fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]) -> torch.Tensor: | |
""" | |
Args: | |
fmap_r (List[List[Tensor]]): List of feature maps from real samples. | |
fmap_g (List[List[Tensor]]): List of feature maps from generated samples. | |
Returns: | |
Tensor: The calculated feature matching loss. | |
""" | |
loss = torch.zeros(1, device=fmap_r[0][0].device, dtype=fmap_r[0][0].dtype) | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss | |