Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
from torch.nn.utils import weight_norm, remove_weight_norm | |
class ConvNeXtBlock(nn.Module): | |
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. | |
Args: | |
dim (int): Number of input channels. | |
intermediate_dim (int): Dimensionality of the intermediate layer. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional LayerNorm. Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
layer_scale_init_value: float, | |
adanorm_num_embeddings: Optional[int] = None, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.adanorm = adanorm_num_embeddings is not None | |
if adanorm_num_embeddings: | |
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) | |
else: | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
def forward(self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None) -> torch.Tensor: | |
residual = x | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
if self.adanorm: | |
assert cond_embedding_id is not None | |
x = self.norm(x, cond_embedding_id) | |
else: | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
x = residual + x | |
return x | |
class AdaLayerNorm(nn.Module): | |
""" | |
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes | |
Args: | |
num_embeddings (int): Number of embeddings. | |
embedding_dim (int): Dimension of the embeddings. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.dim = embedding_dim | |
self.scale = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) | |
self.shift = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) | |
torch.nn.init.ones_(self.scale.weight) | |
torch.nn.init.zeros_(self.shift.weight) | |
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor: | |
scale = self.scale(cond_embedding_id) | |
shift = self.shift(cond_embedding_id) | |
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) | |
x = x * scale + shift | |
return x | |
class ResBlock1(nn.Module): | |
""" | |
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, | |
but without upsampling layers. | |
Args: | |
dim (int): Number of input channels. | |
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. | |
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. | |
Defaults to (1, 3, 5). | |
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. | |
Defaults to 0.1. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
kernel_size: int = 3, | |
dilation: Tuple[int, int, int] = (1, 3, 5), | |
lrelu_slope: float = 0.1, | |
layer_scale_init_value: Optional[float] = None, | |
): | |
super().__init__() | |
self.lrelu_slope = lrelu_slope | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=self.get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=self.get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=self.get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))), | |
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))), | |
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))), | |
] | |
) | |
self.gamma = nn.ParameterList( | |
[ | |
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True) | |
if layer_scale_init_value is not None | |
else None, | |
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True) | |
if layer_scale_init_value is not None | |
else None, | |
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True) | |
if layer_scale_init_value is not None | |
else None, | |
] | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): | |
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) | |
xt = c1(xt) | |
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) | |
xt = c2(xt) | |
if gamma is not None: | |
xt = gamma * xt | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
def get_padding(kernel_size: int, dilation: int = 1) -> int: | |
return int((kernel_size * dilation - dilation) / 2) | |
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: | |
""" | |
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. | |
Args: | |
x (Tensor): Input tensor. | |
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. | |
Returns: | |
Tensor: Element-wise logarithm of the input tensor with clipping applied. | |
""" | |
return torch.log(torch.clip(x, min=clip_val)) | |
def symlog(x: torch.Tensor) -> torch.Tensor: | |
return torch.sign(x) * torch.log1p(x.abs()) | |
def symexp(x: torch.Tensor) -> torch.Tensor: | |
return torch.sign(x) * (torch.exp(x.abs()) - 1) | |