KingNish's picture
Upload ./vocos/helpers.py with huggingface_hub
d2c70a4 verified
raw
history blame
1.91 kB
import matplotlib
import numpy as np
import torch
from matplotlib import pyplot as plt
from pytorch_lightning import Callback
matplotlib.use("Agg")
def save_figure_to_numpy(fig: plt.Figure) -> np.ndarray:
"""
Save a matplotlib figure to a numpy array.
Args:
fig (Figure): Matplotlib figure object.
Returns:
ndarray: Numpy array representing the figure.
"""
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def plot_spectrogram_to_numpy(spectrogram: np.ndarray) -> np.ndarray:
"""
Plot a spectrogram and convert it to a numpy array.
Args:
spectrogram (ndarray): Spectrogram data.
Returns:
ndarray: Numpy array representing the plotted spectrogram.
"""
spectrogram = spectrogram.astype(np.float32)
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
class GradNormCallback(Callback):
"""
Callback to log the gradient norm.
"""
def on_after_backward(self, trainer, model):
model.log("grad_norm", gradient_norm(model))
def gradient_norm(model: torch.nn.Module, norm_type: float = 2.0) -> torch.Tensor:
"""
Compute the gradient norm.
Args:
model (Module): PyTorch model.
norm_type (float, optional): Type of the norm. Defaults to 2.0.
Returns:
Tensor: Gradient norm.
"""
grads = [p.grad for p in model.parameters() if p.grad is not None]
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type) for g in grads]), norm_type)
return total_norm