Spaces:
Running
on
Zero
Running
on
Zero
import matplotlib | |
import numpy as np | |
import torch | |
from matplotlib import pyplot as plt | |
from pytorch_lightning import Callback | |
matplotlib.use("Agg") | |
def save_figure_to_numpy(fig: plt.Figure) -> np.ndarray: | |
""" | |
Save a matplotlib figure to a numpy array. | |
Args: | |
fig (Figure): Matplotlib figure object. | |
Returns: | |
ndarray: Numpy array representing the figure. | |
""" | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
return data | |
def plot_spectrogram_to_numpy(spectrogram: np.ndarray) -> np.ndarray: | |
""" | |
Plot a spectrogram and convert it to a numpy array. | |
Args: | |
spectrogram (ndarray): Spectrogram data. | |
Returns: | |
ndarray: Numpy array representing the plotted spectrogram. | |
""" | |
spectrogram = spectrogram.astype(np.float32) | |
fig, ax = plt.subplots(figsize=(12, 3)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = save_figure_to_numpy(fig) | |
plt.close() | |
return data | |
class GradNormCallback(Callback): | |
""" | |
Callback to log the gradient norm. | |
""" | |
def on_after_backward(self, trainer, model): | |
model.log("grad_norm", gradient_norm(model)) | |
def gradient_norm(model: torch.nn.Module, norm_type: float = 2.0) -> torch.Tensor: | |
""" | |
Compute the gradient norm. | |
Args: | |
model (Module): PyTorch model. | |
norm_type (float, optional): Type of the norm. Defaults to 2.0. | |
Returns: | |
Tensor: Gradient norm. | |
""" | |
grads = [p.grad for p in model.parameters() if p.grad is not None] | |
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type) for g in grads]), norm_type) | |
return total_norm | |