PolyAI-pheme / transformer_infer.py
taras-sereda's picture
nit
586e19e
raw
history blame
9.27 kB
"""Inference logic.
Copyright PolyAI Limited.
"""
import argparse
import json
import logging
import os
import time
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
from einops import rearrange
from librosa.util import normalize
from pyannote.audio import Inference
from transformers import GenerationConfig, T5ForConditionalGeneration
import constants as c
from data.collation import get_text_semantic_token_collater
from data.semantic_dataset import TextTokenizer
from modules.s2a_model import Pheme
from modules.vocoder import VocoderType
# How many times one token can be generated
MAX_TOKEN_COUNT = 100
logging.basicConfig(level=logging.DEBUG)
device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--text", type=str,
default="I gotta say, I would never expect that to happen!"
)
parser.add_argument(
"--manifest_path", type=str, default="demo/manifest.json")
parser.add_argument("--outputdir", type=str, default="demo/")
parser.add_argument("--featuredir", type=str, default="demo/")
parser.add_argument(
"--text_tokens_file", type=str,
default="ckpt/unique_text_tokens.k2symbols"
)
parser.add_argument("--t2s_path", type=str, default="ckpt/t2s/")
parser.add_argument(
"--a2s_path", type=str, default="ckpt/s2a/s2a.ckpt")
parser.add_argument("--target_sample_rate", type=int, default=16_000)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--top_k", type=int, default=210)
parser.add_argument("--voice", type=str, default="male_voice")
return parser.parse_args()
class PhemeClient():
def __init__(self, args):
self.args = args
self.outputdir = args.outputdir
self.target_sample_rate = args.target_sample_rate
self.featuredir = Path(args.featuredir).expanduser()
self.collater = get_text_semantic_token_collater(args.text_tokens_file)
self.phonemizer = TextTokenizer()
self.load_manifest(args.manifest_path)
# T2S model
self.t2s = T5ForConditionalGeneration.from_pretrained(args.t2s_path)
self.t2s.to(device)
self.t2s.eval()
# S2A model
self.s2a = Pheme.load_from_checkpoint(args.a2s_path)
self.s2a.to(device=device)
self.s2a.eval()
# Vocoder
vocoder = VocoderType["SPEECHTOKENIZER"].get_vocoder(None, None)
self.vocoder = vocoder.to(device)
self.vocoder.eval()
self.spkr_embedding = Inference(
"pyannote/embedding",
window="whole",
use_auth_token=os.environ["HUGGING_FACE_HUB_TOKEN"],
)
def load_manifest(self, input_path):
input_file = {}
with open(input_path, "rb") as f:
for line in f:
temp = json.loads(line)
input_file[temp["audio_filepath"].split(".wav")[0]] = temp
self.input_file = input_file
def lazy_decode(self, decoder_output, symbol_table):
semantic_tokens = map(lambda x: symbol_table[x], decoder_output)
semantic_tokens = [int(x) for x in semantic_tokens if x.isdigit()]
return np.array(semantic_tokens)
def infer_text(self, text, voice, sampling_config):
semantic_prompt = np.load(self.args.featuredir + "/audios-speech-tokenizer/semantic/" + f"{voice}.npy") # noqa
phones_seq = self.phonemizer(text)[0]
input_ids = self.collater([phones_seq])
input_ids = input_ids.type(torch.IntTensor).to(device)
labels = [str(lbl) for lbl in semantic_prompt]
labels = self.collater([labels])[:, :-1]
decoder_input_ids = labels.to(device).long()
logging.debug(f"decoder_input_ids: {decoder_input_ids}")
counts = 1E10
while (counts > MAX_TOKEN_COUNT):
output_ids = self.t2s.generate(
input_ids, decoder_input_ids=decoder_input_ids,
generation_config=sampling_config).sequences
# check repetitiveness
_, counts = torch.unique_consecutive(output_ids, return_counts=True)
counts = max(counts).item()
output_semantic = self.lazy_decode(
output_ids[0], self.collater.idx2token)
# remove the prompt
return output_semantic[len(semantic_prompt):].reshape(1, -1)
def _load_speaker_emb(self, element_id_prompt):
wav, _ = sf.read(self.featuredir / element_id_prompt)
audio = normalize(wav) * 0.95
speaker_emb = self.spkr_embedding(
{
"waveform": torch.FloatTensor(audio).unsqueeze(0),
"sample_rate": self.target_sample_rate
}
).reshape(1, -1)
return speaker_emb
def _load_prompt(self, prompt_file_path):
element_id_prompt = Path(prompt_file_path).stem
acoustic_path_prompt = self.featuredir / "audios-speech-tokenizer/acoustic" / f"{element_id_prompt}.npy" # noqa
semantic_path_prompt = self.featuredir / "audios-speech-tokenizer/semantic" / f"{element_id_prompt}.npy" # noqa
acoustic_prompt = np.load(acoustic_path_prompt).squeeze().T
semantic_prompt = np.load(semantic_path_prompt)[None]
return acoustic_prompt, semantic_prompt
def infer_acoustic(self, output_semantic, prompt_file_path):
semantic_tokens = output_semantic.reshape(1, -1)
acoustic_tokens = np.full(
[semantic_tokens.shape[1], 7], fill_value=c.PAD)
acoustic_prompt, semantic_prompt = self._load_prompt(prompt_file_path) # noqa
# Prepend prompt
acoustic_tokens = np.concatenate(
[acoustic_prompt, acoustic_tokens], axis=0)
semantic_tokens = np.concatenate([
semantic_prompt, semantic_tokens], axis=1)
# Add speaker
acoustic_tokens = np.pad(
acoustic_tokens, [[1, 0], [0, 0]], constant_values=c.SPKR_1)
semantic_tokens = np.pad(
semantic_tokens, [[0,0], [1, 0]], constant_values=c.SPKR_1)
speaker_emb = None
if self.s2a.hp.use_spkr_emb:
speaker_emb = self._load_speaker_emb(prompt_file_path)
speaker_emb = np.repeat(
speaker_emb, semantic_tokens.shape[1], axis=0)
speaker_emb = torch.from_numpy(speaker_emb).to(device)
else:
speaker_emb = None
acoustic_tokens = torch.from_numpy(
acoustic_tokens).unsqueeze(0).to(device).long()
semantic_tokens = torch.from_numpy(semantic_tokens).to(device).long()
start_t = torch.tensor(
[acoustic_prompt.shape[0]], dtype=torch.long, device=device)
length = torch.tensor([
semantic_tokens.shape[1]], dtype=torch.long, device=device)
codes = self.s2a.model.inference(
acoustic_tokens,
semantic_tokens,
start_t=start_t,
length=length,
maskgit_inference=True,
speaker_emb=speaker_emb
)
# Remove the prompt
synth_codes = codes[:, :, start_t:]
synth_codes = rearrange(synth_codes, "b c t -> c b t")
return synth_codes
def generate_audio(self, text, voice, sampling_config, prompt_file_path):
start_time = time.time()
output_semantic = self.infer_text(
text, voice, sampling_config
)
logging.debug(f"semantic_tokens: {time.time() - start_time}")
start_time = time.time()
codes = self.infer_acoustic(output_semantic, prompt_file_path)
logging.debug(f"acoustic_tokens: {time.time() - start_time}")
start_time = time.time()
audio_array = self.vocoder.decode(codes)
audio_array = rearrange(audio_array, "1 1 T -> T").cpu().numpy()
logging.debug(f"vocoder time: {time.time() - start_time}")
return audio_array
@torch.no_grad()
def infer(
self, text, voice="male_voice", temperature=0.7,
top_k=210, max_new_tokens=750,
):
sampling_config = GenerationConfig.from_pretrained(
self.args.t2s_path,
top_k=top_k,
num_beams=1,
do_sample=True,
temperature=temperature,
num_return_sequences=1,
max_new_tokens=max_new_tokens,
return_dict_in_generate=True,
output_scores=True
)
voice_data = self.input_file[voice]
prompt_file_path = voice_data["audio_prompt_filepath"]
text = voice_data["text"] + " " + text
audio_array = self.generate_audio(
text, voice, sampling_config, prompt_file_path)
return audio_array
if __name__ == "__main__":
args = parse_arguments()
args.outputdir = Path(args.outputdir).expanduser()
args.outputdir.mkdir(parents=True, exist_ok=True)
args.manifest_path = Path(args.manifest_path).expanduser()
client = PhemeClient(args)
audio_array = client.infer(args.text, voice=args.voice)
sf.write(os.path.join(
args.outputdir, f"{args.voice}.wav"), audio_array,
args.target_sample_rate
)