rcell commited on
Commit
2fba440
·
1 Parent(s): 5195a87
Files changed (2) hide show
  1. app.py +21 -3
  2. inference.ipynb +0 -200
app.py CHANGED
@@ -15,7 +15,18 @@ import utils
15
  from models import SynthesizerTrn
16
  from text.symbols import symbols
17
  from text import text_to_sequence
18
-
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  def get_text(text, hps):
21
  text_norm = text_to_sequence(text, hps.data.text_cleaners)
@@ -39,7 +50,7 @@ hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
39
 
40
  _ = utils.load_checkpoint("G_88000.pth", net_g, None)
41
 
42
- def vc_fn(input_audio):
43
  if input_audio is None:
44
  return "You need to upload an audio", None
45
  sampling_rate, audio = input_audio
@@ -52,10 +63,16 @@ def vc_fn(input_audio):
52
  audio = librosa.to_mono(audio.transpose(1, 0))
53
  if sampling_rate != 16000:
54
  audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
 
 
 
 
55
  source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
56
  print(source.shape)
57
  with torch.inference_mode():
58
  units = hubert.units(source)
 
 
59
 
60
  stn_tst = torch.FloatTensor(units.squeeze(0))
61
  with torch.no_grad():
@@ -73,9 +90,10 @@ with app:
73
  with gr.Tabs():
74
  with gr.TabItem("Basic"):
75
  vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
 
76
  vc_submit = gr.Button("Convert", variant="primary")
77
  vc_output1 = gr.Textbox(label="Output Message")
78
  vc_output2 = gr.Audio(label="Output Audio")
79
- vc_submit.click(vc_fn, [ vc_input3], [vc_output1, vc_output2])
80
 
81
  app.launch()
 
15
  from models import SynthesizerTrn
16
  from text.symbols import symbols
17
  from text import text_to_sequence
18
+ def resize2d(source, target_len):
19
+ source[source<0.001] = np.nan
20
+ target = np.interp(np.arange(0, len(source), len(source) / target_len), np.arange(0, len(source)), source)
21
+ return np.nan_to_num(target)
22
+ def convert_wav_22050_to_f0(audio):
23
+ tmp = librosa.pyin(audio,
24
+ fmin=librosa.note_to_hz('C0'),
25
+ fmax=librosa.note_to_hz('C7'),
26
+ frame_length=1780)[0]
27
+ f0 = np.zeros_like(tmp)
28
+ f0[tmp>0] = tmp[tmp>0]
29
+ return f0
30
 
31
  def get_text(text, hps):
32
  text_norm = text_to_sequence(text, hps.data.text_cleaners)
 
50
 
51
  _ = utils.load_checkpoint("G_88000.pth", net_g, None)
52
 
53
+ def vc_fn(input_audio,vc_transform):
54
  if input_audio is None:
55
  return "You need to upload an audio", None
56
  sampling_rate, audio = input_audio
 
63
  audio = librosa.to_mono(audio.transpose(1, 0))
64
  if sampling_rate != 16000:
65
  audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
66
+
67
+ audio22050 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=22050)
68
+ f0 = convert_wav_22050_to_f0(audio22050)
69
+
70
  source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
71
  print(source.shape)
72
  with torch.inference_mode():
73
  units = hubert.units(source)
74
+ f0 = resize2d(f0, len(units[:, 0])) * vc_transform
75
+ units[:, 0] = f0 / 10
76
 
77
  stn_tst = torch.FloatTensor(units.squeeze(0))
78
  with torch.no_grad():
 
90
  with gr.Tabs():
91
  with gr.TabItem("Basic"):
92
  vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
93
+ vc_transform = gr.Number(label="transform")
94
  vc_submit = gr.Button("Convert", variant="primary")
95
  vc_output1 = gr.Textbox(label="Output Message")
96
  vc_output2 = gr.Audio(label="Output Audio")
97
+ vc_submit.click(vc_fn, [ vc_input3,vc_transform], [vc_output1, vc_output2])
98
 
99
  app.launch()
inference.ipynb DELETED
@@ -1,200 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "%matplotlib inline\n",
10
- "import matplotlib.pyplot as plt\n",
11
- "import IPython.display as ipd\n",
12
- "\n",
13
- "import os\n",
14
- "import json\n",
15
- "import math\n",
16
- "import torch\n",
17
- "from torch import nn\n",
18
- "from torch.nn import functional as F\n",
19
- "from torch.utils.data import DataLoader\n",
20
- "\n",
21
- "import commons\n",
22
- "import utils\n",
23
- "from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
24
- "from models import SynthesizerTrn\n",
25
- "from text.symbols import symbols\n",
26
- "from text import text_to_sequence\n",
27
- "\n",
28
- "from scipy.io.wavfile import write\n",
29
- "\n",
30
- "\n",
31
- "def get_text(text, hps):\n",
32
- " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
33
- " if hps.data.add_blank:\n",
34
- " text_norm = commons.intersperse(text_norm, 0)\n",
35
- " text_norm = torch.LongTensor(text_norm)\n",
36
- " return text_norm"
37
- ]
38
- },
39
- {
40
- "cell_type": "markdown",
41
- "metadata": {},
42
- "source": [
43
- "## LJ Speech"
44
- ]
45
- },
46
- {
47
- "cell_type": "code",
48
- "execution_count": null,
49
- "metadata": {},
50
- "outputs": [],
51
- "source": [
52
- "hps = utils.get_hparams_from_file(\"./configs/ljs_base.json\")"
53
- ]
54
- },
55
- {
56
- "cell_type": "code",
57
- "execution_count": null,
58
- "metadata": {},
59
- "outputs": [],
60
- "source": [
61
- "net_g = SynthesizerTrn(\n",
62
- " len(symbols),\n",
63
- " hps.data.filter_length // 2 + 1,\n",
64
- " hps.train.segment_size // hps.data.hop_length,\n",
65
- " **hps.model).cuda()\n",
66
- "_ = net_g.eval()\n",
67
- "\n",
68
- "_ = utils.load_checkpoint(\"/path/to/pretrained_ljs.pth\", net_g, None)"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "metadata": {},
75
- "outputs": [],
76
- "source": [
77
- "stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
78
- "with torch.no_grad():\n",
79
- " x_tst = stn_tst.cuda().unsqueeze(0)\n",
80
- " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
81
- " audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
82
- "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
83
- ]
84
- },
85
- {
86
- "cell_type": "markdown",
87
- "metadata": {},
88
- "source": [
89
- "## VCTK"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": null,
95
- "metadata": {},
96
- "outputs": [],
97
- "source": [
98
- "hps = utils.get_hparams_from_file(\"./configs/vctk_base.json\")"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": null,
104
- "metadata": {},
105
- "outputs": [],
106
- "source": [
107
- "net_g = SynthesizerTrn(\n",
108
- " len(symbols),\n",
109
- " hps.data.filter_length // 2 + 1,\n",
110
- " hps.train.segment_size // hps.data.hop_length,\n",
111
- " n_speakers=hps.data.n_speakers,\n",
112
- " **hps.model).cuda()\n",
113
- "_ = net_g.eval()\n",
114
- "\n",
115
- "_ = utils.load_checkpoint(\"/path/to/pretrained_vctk.pth\", net_g, None)"
116
- ]
117
- },
118
- {
119
- "cell_type": "code",
120
- "execution_count": null,
121
- "metadata": {},
122
- "outputs": [],
123
- "source": [
124
- "stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
125
- "with torch.no_grad():\n",
126
- " x_tst = stn_tst.cuda().unsqueeze(0)\n",
127
- " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
128
- " sid = torch.LongTensor([4]).cuda()\n",
129
- " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
130
- "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
131
- ]
132
- },
133
- {
134
- "cell_type": "markdown",
135
- "metadata": {},
136
- "source": [
137
- "### Voice Conversion"
138
- ]
139
- },
140
- {
141
- "cell_type": "code",
142
- "execution_count": null,
143
- "metadata": {},
144
- "outputs": [],
145
- "source": [
146
- "dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
147
- "collate_fn = TextAudioSpeakerCollate()\n",
148
- "loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
149
- " batch_size=1, pin_memory=True,\n",
150
- " drop_last=True, collate_fn=collate_fn)\n",
151
- "data_list = list(loader)"
152
- ]
153
- },
154
- {
155
- "cell_type": "code",
156
- "execution_count": null,
157
- "metadata": {},
158
- "outputs": [],
159
- "source": [
160
- "with torch.no_grad():\n",
161
- " x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
162
- " sid_tgt1 = torch.LongTensor([1]).cuda()\n",
163
- " sid_tgt2 = torch.LongTensor([2]).cuda()\n",
164
- " sid_tgt3 = torch.LongTensor([4]).cuda()\n",
165
- " audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
166
- " audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
167
- " audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
168
- "print(\"Original SID: %d\" % sid_src.item())\n",
169
- "ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
170
- "print(\"Converted SID: %d\" % sid_tgt1.item())\n",
171
- "ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
172
- "print(\"Converted SID: %d\" % sid_tgt2.item())\n",
173
- "ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
174
- "print(\"Converted SID: %d\" % sid_tgt3.item())\n",
175
- "ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
176
- ]
177
- }
178
- ],
179
- "metadata": {
180
- "kernelspec": {
181
- "display_name": "Python 3",
182
- "language": "python",
183
- "name": "python3"
184
- },
185
- "language_info": {
186
- "codemirror_mode": {
187
- "name": "ipython",
188
- "version": 3
189
- },
190
- "file_extension": ".py",
191
- "mimetype": "text/x-python",
192
- "name": "python",
193
- "nbconvert_exporter": "python",
194
- "pygments_lexer": "ipython3",
195
- "version": "3.7.7"
196
- }
197
- },
198
- "nbformat": 4,
199
- "nbformat_minor": 4
200
- }