Spaces:
Runtime error
Runtime error
init
Browse files- app.py +21 -3
- inference.ipynb +0 -200
app.py
CHANGED
@@ -15,7 +15,18 @@ import utils
|
|
15 |
from models import SynthesizerTrn
|
16 |
from text.symbols import symbols
|
17 |
from text import text_to_sequence
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def get_text(text, hps):
|
21 |
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
@@ -39,7 +50,7 @@ hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
|
|
39 |
|
40 |
_ = utils.load_checkpoint("G_88000.pth", net_g, None)
|
41 |
|
42 |
-
def vc_fn(input_audio):
|
43 |
if input_audio is None:
|
44 |
return "You need to upload an audio", None
|
45 |
sampling_rate, audio = input_audio
|
@@ -52,10 +63,16 @@ def vc_fn(input_audio):
|
|
52 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
53 |
if sampling_rate != 16000:
|
54 |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
|
|
|
|
|
|
|
|
55 |
source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
|
56 |
print(source.shape)
|
57 |
with torch.inference_mode():
|
58 |
units = hubert.units(source)
|
|
|
|
|
59 |
|
60 |
stn_tst = torch.FloatTensor(units.squeeze(0))
|
61 |
with torch.no_grad():
|
@@ -73,9 +90,10 @@ with app:
|
|
73 |
with gr.Tabs():
|
74 |
with gr.TabItem("Basic"):
|
75 |
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
|
|
|
76 |
vc_submit = gr.Button("Convert", variant="primary")
|
77 |
vc_output1 = gr.Textbox(label="Output Message")
|
78 |
vc_output2 = gr.Audio(label="Output Audio")
|
79 |
-
vc_submit.click(vc_fn, [ vc_input3], [vc_output1, vc_output2])
|
80 |
|
81 |
app.launch()
|
|
|
15 |
from models import SynthesizerTrn
|
16 |
from text.symbols import symbols
|
17 |
from text import text_to_sequence
|
18 |
+
def resize2d(source, target_len):
|
19 |
+
source[source<0.001] = np.nan
|
20 |
+
target = np.interp(np.arange(0, len(source), len(source) / target_len), np.arange(0, len(source)), source)
|
21 |
+
return np.nan_to_num(target)
|
22 |
+
def convert_wav_22050_to_f0(audio):
|
23 |
+
tmp = librosa.pyin(audio,
|
24 |
+
fmin=librosa.note_to_hz('C0'),
|
25 |
+
fmax=librosa.note_to_hz('C7'),
|
26 |
+
frame_length=1780)[0]
|
27 |
+
f0 = np.zeros_like(tmp)
|
28 |
+
f0[tmp>0] = tmp[tmp>0]
|
29 |
+
return f0
|
30 |
|
31 |
def get_text(text, hps):
|
32 |
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
|
|
50 |
|
51 |
_ = utils.load_checkpoint("G_88000.pth", net_g, None)
|
52 |
|
53 |
+
def vc_fn(input_audio,vc_transform):
|
54 |
if input_audio is None:
|
55 |
return "You need to upload an audio", None
|
56 |
sampling_rate, audio = input_audio
|
|
|
63 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
64 |
if sampling_rate != 16000:
|
65 |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
66 |
+
|
67 |
+
audio22050 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=22050)
|
68 |
+
f0 = convert_wav_22050_to_f0(audio22050)
|
69 |
+
|
70 |
source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
|
71 |
print(source.shape)
|
72 |
with torch.inference_mode():
|
73 |
units = hubert.units(source)
|
74 |
+
f0 = resize2d(f0, len(units[:, 0])) * vc_transform
|
75 |
+
units[:, 0] = f0 / 10
|
76 |
|
77 |
stn_tst = torch.FloatTensor(units.squeeze(0))
|
78 |
with torch.no_grad():
|
|
|
90 |
with gr.Tabs():
|
91 |
with gr.TabItem("Basic"):
|
92 |
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
|
93 |
+
vc_transform = gr.Number(label="transform")
|
94 |
vc_submit = gr.Button("Convert", variant="primary")
|
95 |
vc_output1 = gr.Textbox(label="Output Message")
|
96 |
vc_output2 = gr.Audio(label="Output Audio")
|
97 |
+
vc_submit.click(vc_fn, [ vc_input3,vc_transform], [vc_output1, vc_output2])
|
98 |
|
99 |
app.launch()
|
inference.ipynb
DELETED
@@ -1,200 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"%matplotlib inline\n",
|
10 |
-
"import matplotlib.pyplot as plt\n",
|
11 |
-
"import IPython.display as ipd\n",
|
12 |
-
"\n",
|
13 |
-
"import os\n",
|
14 |
-
"import json\n",
|
15 |
-
"import math\n",
|
16 |
-
"import torch\n",
|
17 |
-
"from torch import nn\n",
|
18 |
-
"from torch.nn import functional as F\n",
|
19 |
-
"from torch.utils.data import DataLoader\n",
|
20 |
-
"\n",
|
21 |
-
"import commons\n",
|
22 |
-
"import utils\n",
|
23 |
-
"from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
|
24 |
-
"from models import SynthesizerTrn\n",
|
25 |
-
"from text.symbols import symbols\n",
|
26 |
-
"from text import text_to_sequence\n",
|
27 |
-
"\n",
|
28 |
-
"from scipy.io.wavfile import write\n",
|
29 |
-
"\n",
|
30 |
-
"\n",
|
31 |
-
"def get_text(text, hps):\n",
|
32 |
-
" text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
|
33 |
-
" if hps.data.add_blank:\n",
|
34 |
-
" text_norm = commons.intersperse(text_norm, 0)\n",
|
35 |
-
" text_norm = torch.LongTensor(text_norm)\n",
|
36 |
-
" return text_norm"
|
37 |
-
]
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"cell_type": "markdown",
|
41 |
-
"metadata": {},
|
42 |
-
"source": [
|
43 |
-
"## LJ Speech"
|
44 |
-
]
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"cell_type": "code",
|
48 |
-
"execution_count": null,
|
49 |
-
"metadata": {},
|
50 |
-
"outputs": [],
|
51 |
-
"source": [
|
52 |
-
"hps = utils.get_hparams_from_file(\"./configs/ljs_base.json\")"
|
53 |
-
]
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"execution_count": null,
|
58 |
-
"metadata": {},
|
59 |
-
"outputs": [],
|
60 |
-
"source": [
|
61 |
-
"net_g = SynthesizerTrn(\n",
|
62 |
-
" len(symbols),\n",
|
63 |
-
" hps.data.filter_length // 2 + 1,\n",
|
64 |
-
" hps.train.segment_size // hps.data.hop_length,\n",
|
65 |
-
" **hps.model).cuda()\n",
|
66 |
-
"_ = net_g.eval()\n",
|
67 |
-
"\n",
|
68 |
-
"_ = utils.load_checkpoint(\"/path/to/pretrained_ljs.pth\", net_g, None)"
|
69 |
-
]
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"cell_type": "code",
|
73 |
-
"execution_count": null,
|
74 |
-
"metadata": {},
|
75 |
-
"outputs": [],
|
76 |
-
"source": [
|
77 |
-
"stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
|
78 |
-
"with torch.no_grad():\n",
|
79 |
-
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
80 |
-
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
81 |
-
" audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
82 |
-
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
83 |
-
]
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"cell_type": "markdown",
|
87 |
-
"metadata": {},
|
88 |
-
"source": [
|
89 |
-
"## VCTK"
|
90 |
-
]
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"cell_type": "code",
|
94 |
-
"execution_count": null,
|
95 |
-
"metadata": {},
|
96 |
-
"outputs": [],
|
97 |
-
"source": [
|
98 |
-
"hps = utils.get_hparams_from_file(\"./configs/vctk_base.json\")"
|
99 |
-
]
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"cell_type": "code",
|
103 |
-
"execution_count": null,
|
104 |
-
"metadata": {},
|
105 |
-
"outputs": [],
|
106 |
-
"source": [
|
107 |
-
"net_g = SynthesizerTrn(\n",
|
108 |
-
" len(symbols),\n",
|
109 |
-
" hps.data.filter_length // 2 + 1,\n",
|
110 |
-
" hps.train.segment_size // hps.data.hop_length,\n",
|
111 |
-
" n_speakers=hps.data.n_speakers,\n",
|
112 |
-
" **hps.model).cuda()\n",
|
113 |
-
"_ = net_g.eval()\n",
|
114 |
-
"\n",
|
115 |
-
"_ = utils.load_checkpoint(\"/path/to/pretrained_vctk.pth\", net_g, None)"
|
116 |
-
]
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"cell_type": "code",
|
120 |
-
"execution_count": null,
|
121 |
-
"metadata": {},
|
122 |
-
"outputs": [],
|
123 |
-
"source": [
|
124 |
-
"stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
|
125 |
-
"with torch.no_grad():\n",
|
126 |
-
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
127 |
-
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
128 |
-
" sid = torch.LongTensor([4]).cuda()\n",
|
129 |
-
" audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
130 |
-
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"cell_type": "markdown",
|
135 |
-
"metadata": {},
|
136 |
-
"source": [
|
137 |
-
"### Voice Conversion"
|
138 |
-
]
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"cell_type": "code",
|
142 |
-
"execution_count": null,
|
143 |
-
"metadata": {},
|
144 |
-
"outputs": [],
|
145 |
-
"source": [
|
146 |
-
"dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
|
147 |
-
"collate_fn = TextAudioSpeakerCollate()\n",
|
148 |
-
"loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
|
149 |
-
" batch_size=1, pin_memory=True,\n",
|
150 |
-
" drop_last=True, collate_fn=collate_fn)\n",
|
151 |
-
"data_list = list(loader)"
|
152 |
-
]
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"cell_type": "code",
|
156 |
-
"execution_count": null,
|
157 |
-
"metadata": {},
|
158 |
-
"outputs": [],
|
159 |
-
"source": [
|
160 |
-
"with torch.no_grad():\n",
|
161 |
-
" x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
|
162 |
-
" sid_tgt1 = torch.LongTensor([1]).cuda()\n",
|
163 |
-
" sid_tgt2 = torch.LongTensor([2]).cuda()\n",
|
164 |
-
" sid_tgt3 = torch.LongTensor([4]).cuda()\n",
|
165 |
-
" audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
|
166 |
-
" audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
|
167 |
-
" audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
|
168 |
-
"print(\"Original SID: %d\" % sid_src.item())\n",
|
169 |
-
"ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
|
170 |
-
"print(\"Converted SID: %d\" % sid_tgt1.item())\n",
|
171 |
-
"ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
|
172 |
-
"print(\"Converted SID: %d\" % sid_tgt2.item())\n",
|
173 |
-
"ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
|
174 |
-
"print(\"Converted SID: %d\" % sid_tgt3.item())\n",
|
175 |
-
"ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
|
176 |
-
]
|
177 |
-
}
|
178 |
-
],
|
179 |
-
"metadata": {
|
180 |
-
"kernelspec": {
|
181 |
-
"display_name": "Python 3",
|
182 |
-
"language": "python",
|
183 |
-
"name": "python3"
|
184 |
-
},
|
185 |
-
"language_info": {
|
186 |
-
"codemirror_mode": {
|
187 |
-
"name": "ipython",
|
188 |
-
"version": 3
|
189 |
-
},
|
190 |
-
"file_extension": ".py",
|
191 |
-
"mimetype": "text/x-python",
|
192 |
-
"name": "python",
|
193 |
-
"nbconvert_exporter": "python",
|
194 |
-
"pygments_lexer": "ipython3",
|
195 |
-
"version": "3.7.7"
|
196 |
-
}
|
197 |
-
},
|
198 |
-
"nbformat": 4,
|
199 |
-
"nbformat_minor": 4
|
200 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|