innnky's picture
Update app.py
f9403b4
import gradio as gr
import os
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
import logging
numba_logger = logging.getLogger('numba')
numba_logger.setLevel(logging.WARNING)
import librosa
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
def resize2d(source, target_len):
source[source<0.001] = np.nan
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
return np.nan_to_num(target)
def convert_wav_22050_to_f0(audio):
tmp = librosa.pyin(audio,
fmin=librosa.note_to_hz('C0'),
fmax=librosa.note_to_hz('C7'),
frame_length=1780)[0]
f0 = np.zeros_like(tmp)
f0[tmp>0] = tmp[tmp>0]
return f0
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
print(text_norm.shape)
return text_norm
hps = utils.get_hparams_from_file("configs/ljs_base.json")
hps_ms = utils.get_hparams_from_file("configs/vctk_base.json")
net_g_ms = SynthesizerTrn(
len(symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model)
import numpy as np
hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
_ = utils.load_checkpoint("G_312000.pth", net_g_ms, None)
def vc_fn(input_audio,vc_transform):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
if duration > 30:
return "Error: Audio is too long", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050)
f0 = convert_wav_22050_to_f0(audio22050)
source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
print(source.shape)
with torch.inference_mode():
units = hubert.units(source)
soft = units.squeeze(0).numpy()
print(sampling_rate)
f0 = resize2d(f0, len(soft[:, 0])) * vc_transform
soft[:, 0] = f0 / 10
sid = torch.LongTensor([0])
stn_tst = torch.FloatTensor(soft)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g_ms.infer(x_tst, x_tst_lengths,sid=sid, noise_scale=0.1, noise_scale_w=0.1, length_scale=1)[0][
0, 0].data.float().numpy()
return "Success", (hps.data.sampling_rate, audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
gr.Markdown(value="""目前模型已更新2.0,新模型模型的 [在线Demo](https://huggingface.co./spaces/innnky/nyaru-svc2.0)
自己制作数据集并训练模型一键脚本 [b站专栏](https://www.bilibili.com/read/cv18548051)
""")
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
vc_transform = gr.Number(label="transform",value=1.0)
vc_submit = gr.Button("Convert", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [ vc_input3,vc_transform], [vc_output1, vc_output2])
app.launch()