Spaces:
Build error
Build error
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's TRL library. | |
# https://github.com/huggingface/trl/blob/v0.8.0/examples/scripts/kto.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, List, Optional | |
from ...data import KTODataCollatorWithPadding, get_dataset | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.ploting import plot_loss | |
from ...hparams import ModelArguments | |
from ...model import load_model, load_tokenizer | |
from ..trainer_utils import create_modelcard_and_push, create_ref_model | |
from .trainer import CustomKTOTrainer | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments | |
def run_kto( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
dataset_module = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) | |
data_collator = KTODataCollatorWithPadding( | |
tokenizer=tokenizer, | |
pad_to_multiple_of=8, | |
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, | |
) | |
# Create reference model | |
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself | |
ref_model = model | |
else: | |
ref_model = create_ref_model(model_args, finetuning_args) | |
# Update arguments | |
training_args.remove_unused_columns = False # important for pairwise dataset | |
# Initialize our Trainer | |
trainer = CustomKTOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
finetuning_args=finetuning_args, | |
data_collator=data_collator, | |
callbacks=callbacks, | |
**dataset_module, | |
**tokenizer_module, | |
) | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
trainer.save_model() | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "train/rewards/chosen"]) | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval") | |
if id(model) == id(ref_model): # unable to compute rewards without a reference model | |
remove_keys = [key for key in metrics.keys() if "rewards" in key] | |
for key in remove_keys: | |
metrics.pop(key) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Create model card | |
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |