File size: 7,114 Bytes
51a2766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from typing import Any, Dict, List, Optional
import cv2
import gradio

import facefusion.globals
from facefusion import wording
from facefusion.core import conditional_append_reference_faces
from facefusion.face_store import clear_static_faces, get_reference_faces, clear_reference_faces
from facefusion.typing import Frame, Face, FaceSet
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image, read_static_images
from facefusion.face_analyser import get_average_face, clear_face_analyser
from facefusion.content_analyser import analyse_frame
from facefusion.processors.frame.core import load_frame_processor_module
from facefusion.filesystem import is_image, is_video
from facefusion.uis.typing import ComponentName
from facefusion.uis.core import get_ui_component, register_ui_component

PREVIEW_IMAGE : Optional[gradio.Image] = None
PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None


def render() -> None:
	global PREVIEW_IMAGE
	global PREVIEW_FRAME_SLIDER

	preview_image_args: Dict[str, Any] =\
	{
		'label': wording.get('preview_image_label'),
		'interactive': False
	}
	preview_frame_slider_args: Dict[str, Any] =\
	{
		'label': wording.get('preview_frame_slider_label'),
		'step': 1,
		'minimum': 0,
		'maximum': 100,
		'visible': False
	}
	conditional_append_reference_faces()
	source_frames = read_static_images(facefusion.globals.source_paths)
	source_face = get_average_face(source_frames)
	reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
	if is_image(facefusion.globals.target_path):
		target_frame = read_static_image(facefusion.globals.target_path)
		preview_frame = process_preview_frame(source_face, reference_faces, target_frame)
		preview_image_args['value'] = normalize_frame_color(preview_frame)
	if is_video(facefusion.globals.target_path):
		temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
		preview_frame = process_preview_frame(source_face, reference_faces, temp_frame)
		preview_image_args['value'] = normalize_frame_color(preview_frame)
		preview_image_args['visible'] = True
		preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
		preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path)
		preview_frame_slider_args['visible'] = True
	PREVIEW_IMAGE = gradio.Image(**preview_image_args)
	PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
	register_ui_component('preview_frame_slider', PREVIEW_FRAME_SLIDER)


def listen() -> None:
	PREVIEW_FRAME_SLIDER.release(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
	multi_one_component_names : List[ComponentName] =\
	[
		'source_image',
		'target_image',
		'target_video'
	]
	for component_name in multi_one_component_names:
		component = get_ui_component(component_name)
		if component:
			for method in [ 'upload', 'change', 'clear' ]:
				getattr(component, method)(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
	multi_two_component_names : List[ComponentName] =\
	[
		'target_image',
		'target_video'
	]
	for component_name in multi_two_component_names:
		component = get_ui_component(component_name)
		if component:
			for method in [ 'upload', 'change', 'clear' ]:
				getattr(component, method)(update_preview_frame_slider, outputs = PREVIEW_FRAME_SLIDER)
	select_component_names : List[ComponentName] =\
	[
		'reference_face_position_gallery',
		'face_analyser_order_dropdown',
		'face_analyser_age_dropdown',
		'face_analyser_gender_dropdown'
	]
	for component_name in select_component_names:
		component = get_ui_component(component_name)
		if component:
			component.select(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
	change_one_component_names : List[ComponentName] =\
	[
		'face_debugger_items_checkbox_group',
		'face_enhancer_model_dropdown',
		'face_enhancer_blend_slider',
		'frame_enhancer_model_dropdown',
		'frame_enhancer_blend_slider',
		'face_selector_mode_dropdown',
		'reference_face_distance_slider',
		'face_mask_types_checkbox_group',
		'face_mask_blur_slider',
		'face_mask_padding_top_slider',
		'face_mask_padding_bottom_slider',
		'face_mask_padding_left_slider',
		'face_mask_padding_right_slider',
		'face_mask_region_checkbox_group'
	]
	for component_name in change_one_component_names:
		component = get_ui_component(component_name)
		if component:
			component.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
	change_two_component_names : List[ComponentName] =\
	[
		'frame_processors_checkbox_group',
		'face_swapper_model_dropdown',
		'face_detector_model_dropdown',
		'face_detector_size_dropdown',
		'face_detector_score_slider'
	]
	for component_name in change_two_component_names:
		component = get_ui_component(component_name)
		if component:
			component.change(clear_and_update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)


def clear_and_update_preview_image(frame_number : int = 0) -> gradio.Image:
	clear_face_analyser()
	clear_reference_faces()
	clear_static_faces()
	return update_preview_image(frame_number)


def update_preview_image(frame_number : int = 0) -> gradio.Image:
	conditional_append_reference_faces()
	source_frames = read_static_images(facefusion.globals.source_paths)
	source_face = get_average_face(source_frames)
	reference_face = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
	if is_image(facefusion.globals.target_path):
		target_frame = read_static_image(facefusion.globals.target_path)
		preview_frame = process_preview_frame(source_face, reference_face, target_frame)
		preview_frame = normalize_frame_color(preview_frame)
		return gradio.Image(value = preview_frame)
	if is_video(facefusion.globals.target_path):
		temp_frame = get_video_frame(facefusion.globals.target_path, frame_number)
		preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
		preview_frame = normalize_frame_color(preview_frame)
		return gradio.Image(value = preview_frame)
	return gradio.Image(value = None)


def update_preview_frame_slider() -> gradio.Slider:
	if is_video(facefusion.globals.target_path):
		video_frame_total = count_video_frame_total(facefusion.globals.target_path)
		return gradio.Slider(maximum = video_frame_total, visible = True)
	return gradio.Slider(value = None, maximum = None, visible = False)


def process_preview_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
	temp_frame = resize_frame_dimension(temp_frame, 640, 640)
	if analyse_frame(temp_frame):
		return cv2.GaussianBlur(temp_frame, (99, 99), 0)
	for frame_processor in facefusion.globals.frame_processors:
		frame_processor_module = load_frame_processor_module(frame_processor)
		if frame_processor_module.pre_process('preview'):
			temp_frame = frame_processor_module.process_frame(
				source_face,
				reference_faces,
				temp_frame
			)
	return temp_frame