Spaces:
Runtime error
Runtime error
Ankur Goyal
commited on
Commit
•
2359223
1
Parent(s):
d229b67
Switch to Gradio
Browse files- README.md +2 -4
- app.py +137 -141
- contract.jpeg +0 -0
- invoice.png +0 -0
- statement.png +0 -0
README.md
CHANGED
@@ -3,10 +3,8 @@ title: DocQuery
|
|
3 |
emoji: 🦉
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
-
sdk:
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
3 |
emoji: 🦉
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.1.7
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
|
|
|
app.py
CHANGED
@@ -2,15 +2,13 @@ import os
|
|
2 |
|
3 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
4 |
|
5 |
-
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
st.set_page_config(layout="wide")
|
10 |
|
11 |
import torch
|
12 |
from docquery.pipeline import get_pipeline
|
13 |
-
from docquery.document import load_bytes, load_document
|
14 |
|
15 |
|
16 |
def ensure_list(x):
|
@@ -25,15 +23,21 @@ CHECKPOINTS = {
|
|
25 |
"Donut 🍩": "naver-clova-ix/donut-base-finetuned-docvqa",
|
26 |
}
|
27 |
|
|
|
|
|
28 |
|
29 |
-
@st.experimental_singleton(show_spinner=False)
|
30 |
def construct_pipeline(model):
|
|
|
|
|
|
|
|
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
ret = get_pipeline(checkpoint=CHECKPOINTS[model], device=device)
|
|
|
33 |
return ret
|
34 |
|
35 |
|
36 |
-
@
|
37 |
def run_pipeline(model, question, document, top_k):
|
38 |
pipeline = construct_pipeline(model)
|
39 |
return pipeline(question=question, **document.context, top_k=top_k)
|
@@ -59,150 +63,142 @@ def normalize_bbox(box, width, height):
|
|
59 |
return [pct[0] * width, pct[1] * height, pct[2] * width, pct[3] * height]
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
if "last_clicked" not in st.session_state:
|
68 |
-
st.session_state["last_clicked"] = None
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
with input_col:
|
73 |
-
input_type = st.radio(
|
74 |
-
"Pick an input type", ["Upload", "URL", "Examples"], horizontal=True
|
75 |
-
)
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
-
|
82 |
-
if st.session_state.file_input is None:
|
83 |
-
return
|
84 |
|
85 |
-
file = st.session_state.file_input
|
86 |
-
with loading_placeholder:
|
87 |
-
with st.spinner("Processing..."):
|
88 |
-
document = load_bytes(file, file.name)
|
89 |
-
_ = document.context
|
90 |
-
st.session_state.document = document
|
91 |
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
(
|
108 |
-
|
109 |
-
|
110 |
-
),
|
111 |
-
(
|
112 |
-
"https://miro.medium.com/max/787/1*iECQRIiOGTmEFLdWkVIH2g.jpeg",
|
113 |
-
"What is the purchase amount?",
|
114 |
-
),
|
115 |
-
(
|
116 |
-
"https://www.accountingcoach.com/wp-content/uploads/2013/10/[email protected]",
|
117 |
-
"What are net sales for 2020?",
|
118 |
-
),
|
119 |
-
]
|
120 |
-
imgs_clicked = []
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
"display": "flex",
|
137 |
-
"justify-content": "center",
|
138 |
-
"flex-wrap": "wrap",
|
139 |
-
"cursor": "pointer",
|
140 |
-
},
|
141 |
-
img_style={"margin": "5px", "height": "200px"},
|
142 |
-
)
|
143 |
-
)
|
144 |
-
st.markdown(
|
145 |
-
f"<p style='text-align: center'>{question}</p>",
|
146 |
-
unsafe_allow_html=True,
|
147 |
-
)
|
148 |
-
print(imgs_clicked)
|
149 |
-
imgs_clicked = [-1] * len(imgs_clicked)
|
150 |
-
|
151 |
-
# clicked = clickable_images(
|
152 |
-
# [x[0] for x in examples],
|
153 |
-
# titles=[x[1] for x in examples],
|
154 |
-
# div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
|
155 |
-
# img_style={"margin": "5px", "height": "200px"},
|
156 |
-
# )
|
157 |
-
#
|
158 |
-
# st.markdown(f"Image #{clicked} clicked" if clicked > -1 else "No image clicked")
|
159 |
-
|
160 |
-
|
161 |
-
question = st.text_input("QUESTION", "", key="question")
|
162 |
-
|
163 |
-
document = st.session_state.document
|
164 |
-
loading_placeholder = st.empty()
|
165 |
-
if document is not None:
|
166 |
-
col1, col2 = st.columns(2)
|
167 |
-
image = document.preview
|
168 |
-
|
169 |
-
question = st.session_state.question
|
170 |
-
colors = ["blue", "red", "green"]
|
171 |
-
if document is not None and question is not None and len(question) > 0:
|
172 |
-
col2.header(f"Answers ({model_type})")
|
173 |
-
with col2:
|
174 |
-
answers_placeholder = st.container()
|
175 |
-
answers_loading_placeholder = st.container()
|
176 |
-
|
177 |
-
with answers_loading_placeholder:
|
178 |
-
# Run this (one-time) expensive operation outside of the processing
|
179 |
-
# question placeholder
|
180 |
-
with st.spinner("Constructing pipeline..."):
|
181 |
-
construct_pipeline(model_type)
|
182 |
-
|
183 |
-
with st.spinner("Processing question..."):
|
184 |
-
predictions = run_pipeline(
|
185 |
-
model=model_type, question=question, document=document, top_k=1
|
186 |
-
)
|
187 |
-
|
188 |
-
with answers_placeholder:
|
189 |
-
image = image.copy()
|
190 |
-
draw = ImageDraw.Draw(image)
|
191 |
-
for i, p in enumerate(ensure_list(predictions)):
|
192 |
-
col2.markdown(f"#### { p['answer'] }: ({round(p['score'] * 100, 1)}%)")
|
193 |
-
if "start" in p and "end" in p:
|
194 |
-
x1, y1, x2, y2 = normalize_bbox(
|
195 |
-
expand_bbox(
|
196 |
-
lift_word_boxes(document)[p["start"] : p["end"] + 1]
|
197 |
-
),
|
198 |
-
image.width,
|
199 |
-
image.height,
|
200 |
-
)
|
201 |
-
draw.rectangle(((x1, y1), (x2, y2)), outline=colors[i], width=3)
|
202 |
-
|
203 |
-
if document is not None:
|
204 |
-
col1.image(image, use_column_width="auto")
|
205 |
-
|
206 |
-
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them."
|
207 |
-
|
208 |
-
"[Github Repo](https://github.com/impira/docquery)"
|
|
|
2 |
|
3 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
4 |
|
5 |
+
import functools
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
import gradio as gr
|
|
|
|
|
8 |
|
9 |
import torch
|
10 |
from docquery.pipeline import get_pipeline
|
11 |
+
from docquery.document import load_bytes, load_document, ImageDocument
|
12 |
|
13 |
|
14 |
def ensure_list(x):
|
|
|
23 |
"Donut 🍩": "naver-clova-ix/donut-base-finetuned-docvqa",
|
24 |
}
|
25 |
|
26 |
+
PIPELINES = {}
|
27 |
+
|
28 |
|
|
|
29 |
def construct_pipeline(model):
|
30 |
+
global PIPELINES
|
31 |
+
if model in PIPELINES:
|
32 |
+
return PIPELINES[model]
|
33 |
+
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
ret = get_pipeline(checkpoint=CHECKPOINTS[model], device=device)
|
36 |
+
PIPELINES[model] = ret
|
37 |
return ret
|
38 |
|
39 |
|
40 |
+
@functools.lru_cache(1024)
|
41 |
def run_pipeline(model, question, document, top_k):
|
42 |
pipeline = construct_pipeline(model)
|
43 |
return pipeline(question=question, **document.context, top_k=top_k)
|
|
|
63 |
return [pct[0] * width, pct[1] * height, pct[2] * width, pct[3] * height]
|
64 |
|
65 |
|
66 |
+
examples = [
|
67 |
+
[
|
68 |
+
"invoice.png",
|
69 |
+
"What is the invoice number?",
|
70 |
+
],
|
71 |
+
[
|
72 |
+
"contract.jpeg",
|
73 |
+
"What is the purchase amount?",
|
74 |
+
],
|
75 |
+
[
|
76 |
+
"statement.png",
|
77 |
+
"What are net sales for 2020?",
|
78 |
+
],
|
79 |
+
]
|
80 |
|
|
|
|
|
81 |
|
82 |
+
def process_path(path):
|
83 |
+
if path:
|
84 |
+
try:
|
85 |
+
document = load_document(path)
|
86 |
+
return document, document.preview, None
|
87 |
+
except Exception:
|
88 |
+
pass
|
89 |
+
return None, None, None
|
90 |
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
def process_upload(file):
|
93 |
+
if file:
|
94 |
+
return process_path(file.name)
|
95 |
+
else:
|
96 |
+
return None, None, None
|
97 |
|
98 |
|
99 |
+
colors = ["blue", "green", "black"]
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
def process_question(question, document, model=list(CHECKPOINTS.keys())[0]):
|
103 |
+
if document is None:
|
104 |
+
return None, None
|
105 |
|
106 |
+
predictions = run_pipeline(model, question, document, 3)
|
107 |
+
image = document.preview.copy()
|
108 |
+
draw = ImageDraw.Draw(image)
|
109 |
+
for i, p in enumerate(ensure_list(predictions)):
|
110 |
+
if i > 0:
|
111 |
+
# Keep the code around to produce multiple boxes, but only show the top
|
112 |
+
# prediction for now
|
113 |
+
break
|
114 |
|
115 |
+
if "start" in p and "end" in p:
|
116 |
+
x1, y1, x2, y2 = normalize_bbox(
|
117 |
+
expand_bbox(lift_word_boxes(document)[p["start"] : p["end"] + 1]),
|
118 |
+
image.width,
|
119 |
+
image.height,
|
120 |
+
)
|
121 |
+
draw.rectangle(((x1, y1), (x2, y2)), outline=colors[i], width=2)
|
122 |
+
|
123 |
+
return image, predictions
|
124 |
+
|
125 |
+
|
126 |
+
def load_example_document(img, question, model):
|
127 |
+
document = ImageDocument(Image.fromarray(img))
|
128 |
+
preview, answer = process_question(question, document, model)
|
129 |
+
return document, question, preview, answer
|
130 |
+
|
131 |
+
|
132 |
+
with gr.Blocks() as demo:
|
133 |
+
gr.Markdown("# DocQuery: Query Documents w/ NLP")
|
134 |
+
document = gr.Variable()
|
135 |
+
example_question = gr.Textbox(visible=False)
|
136 |
+
example_image = gr.Image(visible=False)
|
137 |
+
|
138 |
+
gr.Markdown("## 1. Upload a file or select an example")
|
139 |
+
with gr.Row(equal_height=True):
|
140 |
+
with gr.Column():
|
141 |
+
upload = gr.File(label="Upload a file", interactive=True)
|
142 |
+
url = gr.Textbox(label="... or a URL", interactive=True)
|
143 |
+
gr.Examples(
|
144 |
+
examples=examples,
|
145 |
+
inputs=[example_image, example_question],
|
146 |
+
)
|
147 |
+
|
148 |
+
gr.Markdown("## 2. Ask a question")
|
149 |
+
|
150 |
+
with gr.Row(equal_height=True):
|
151 |
+
# NOTE: When https://github.com/gradio-app/gradio/issues/2103 is resolved,
|
152 |
+
# we can support enter-key submit
|
153 |
+
question = gr.Textbox(
|
154 |
+
label="Question", placeholder="e.g. What is the invoice number?"
|
155 |
+
)
|
156 |
+
model = gr.Radio(
|
157 |
+
choices=list(CHECKPOINTS.keys()),
|
158 |
+
value=list(CHECKPOINTS.keys())[0],
|
159 |
+
label="Model",
|
160 |
+
)
|
161 |
+
|
162 |
+
with gr.Row():
|
163 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
164 |
+
submit_button = gr.Button("Submit", variant="primary", elem_id="submit-button")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
image = gr.Image(visible=True)
|
168 |
+
with gr.Column():
|
169 |
+
output = gr.JSON(label="Output")
|
170 |
+
|
171 |
+
clear_button.click(
|
172 |
+
lambda _: (None, None, None, None),
|
173 |
+
inputs=clear_button,
|
174 |
+
outputs=[image, document, question, output],
|
175 |
+
)
|
176 |
+
upload.change(fn=process_upload, inputs=[upload], outputs=[document, image, output])
|
177 |
+
url.change(fn=process_path, inputs=[url], outputs=[document, image, output])
|
178 |
|
179 |
+
submit_button.click(
|
180 |
+
process_question,
|
181 |
+
inputs=[question, document, model],
|
182 |
+
outputs=[image, output],
|
183 |
+
)
|
184 |
|
185 |
+
# This is handy but commented out for now because we can't "auto submit" questions either
|
186 |
+
# model.change(
|
187 |
+
# process_question, inputs=[question, document, model], outputs=[image, output]
|
188 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
example_image.change(
|
191 |
+
fn=load_example_document,
|
192 |
+
inputs=[example_image, example_question, model],
|
193 |
+
outputs=[document, question, image, output],
|
194 |
)
|
195 |
+
|
196 |
+
gr.Markdown("### More Info")
|
197 |
+
gr.Markdown("DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question"
|
198 |
+
" answering dataset, as well as SQuAD, which boosts its English-language comprehension."
|
199 |
+
" To use it, simply upload an image or PDF, type a question, and click 'submit', or "
|
200 |
+
" click one of the examples to load them.")
|
201 |
+
gr.Markdown("[Github Repo](https://github.com/impira/docquery)")
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
contract.jpeg
ADDED
invoice.png
ADDED
statement.png
ADDED