Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import pathlib | |
import gradio as gr | |
import slugify | |
from constants import UploadTarget | |
from uploader import Uploader | |
from utils import find_exp_dirs | |
class LoRAModelUploader(Uploader): | |
def upload_lora_model( | |
self, | |
folder_path: str, | |
repo_name: str, | |
upload_to: str, | |
private: bool, | |
delete_existing_repo: bool, | |
) -> str: | |
if not folder_path: | |
raise ValueError | |
if not repo_name: | |
repo_name = pathlib.Path(folder_path).name | |
repo_name = slugify.slugify(repo_name) | |
if upload_to == UploadTarget.PERSONAL_PROFILE.value: | |
organization = '' | |
elif upload_to == UploadTarget.LORA_LIBRARY.value: | |
organization = 'lora-library' | |
else: | |
raise ValueError | |
return self.upload(folder_path, | |
repo_name, | |
organization=organization, | |
private=private, | |
delete_existing_repo=delete_existing_repo) | |
def load_local_lora_model_list() -> dict: | |
choices = find_exp_dirs(ignore_repo=True) | |
return gr.update(choices=choices, value=choices[0] if choices else None) | |
def create_upload_demo(hf_token: str | None) -> gr.Blocks: | |
uploader = LoRAModelUploader(hf_token) | |
model_dirs = find_exp_dirs(ignore_repo=True) | |
with gr.Blocks() as demo: | |
with gr.Box(): | |
gr.Markdown('Local Models') | |
reload_button = gr.Button('Reload Model List') | |
model_dir = gr.Dropdown( | |
label='Model names', | |
choices=model_dirs, | |
value=model_dirs[0] if model_dirs else None) | |
with gr.Box(): | |
gr.Markdown('Upload Settings') | |
with gr.Row(): | |
use_private_repo = gr.Checkbox(label='Private', value=True) | |
delete_existing_repo = gr.Checkbox( | |
label='Delete existing repo of the same name', value=False) | |
upload_to = gr.Radio(label='Upload to', | |
choices=[_.value for _ in UploadTarget], | |
value=UploadTarget.LORA_LIBRARY.value) | |
model_name = gr.Textbox(label='Model Name') | |
upload_button = gr.Button('Upload') | |
gr.Markdown(''' | |
- You can upload your trained model to your personal profile (i.e. https://huggingface.co./{your_username}/{model_name}) or to the public [LoRA Concepts Library](https://huggingface.co./lora-library) (i.e. https://huggingface.co./lora-library/{model_name}). | |
''') | |
with gr.Box(): | |
gr.Markdown('Output message') | |
output_message = gr.Markdown() | |
reload_button.click(fn=load_local_lora_model_list, | |
inputs=None, | |
outputs=model_dir) | |
upload_button.click(fn=uploader.upload_lora_model, | |
inputs=[ | |
model_dir, | |
model_name, | |
upload_to, | |
use_private_repo, | |
delete_existing_repo, | |
], | |
outputs=output_message) | |
return demo | |
if __name__ == '__main__': | |
import os | |
hf_token = os.getenv('HF_TOKEN') | |
demo = create_upload_demo(hf_token) | |
demo.queue(max_size=1).launch(share=False) | |