import torch import torch.nn as nn import numpy as np from einops import rearrange, repeat class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads, dim_head, dropout): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None): # x:[b,n,dim] b, n, _, h = *x.shape, self.heads # get qkv tuple:([b,n,head_num*head_dim],[...],[...]) qkv = self.to_qkv(x).chunk(3, dim = -1) # split q,k,v from [b,n,head_num*head_dim] -> [b,head_num,n,head_dim] q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) # transpose(k) * q / sqrt(head_dim) -> [b,head_num,n,n] dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale mask_value = -torch.finfo(dots.dtype).max # mask value: -inf if mask is not None: mask = F.pad(mask.flatten(1), (1, 0), value = True) assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' mask = mask[:, None, :] * mask[:, :, None] dots.masked_fill_(~mask, mask_value) del mask # softmax normalization -> attention matrix attn = dots.softmax(dim=-1) # value * attention matrix -> output out = torch.einsum('bhij,bhjd->bhid', attn, v) # cat all output -> [b, n, head_num*head_dim] out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class CrossAttention(nn.Module): def __init__(self, dim, heads, dim_head, dropout): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.to_k = nn.Linear(dim, inner_dim , bias=False) self.to_v = nn.Linear(dim, inner_dim , bias = False) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x_qkv): b, n, _, h = *x_qkv.shape, self.heads k = self.to_k(x_qkv) k = rearrange(k, 'b n (h d) -> b h n d', h = h) v = self.to_v(x_qkv) v = rearrange(v, 'b n (h d) -> b h n d', h = h) q = self.to_q(x_qkv[:, 0].unsqueeze(1)) q = rearrange(q, 'b n (h d) -> b h n d', h = h) dots = torch.einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = dots.softmax(dim=-1) out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_head, dropout, num_channel): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout))) ])) self.skipcat = nn.ModuleList([]) for _ in range(depth-2): self.skipcat.append(nn.Conv2d(num_channel+1, num_channel+1, [1, 2], 1, 0)) def forward(self, x, mask = None): for attn, ff in self.layers: x = attn(x, mask = mask) x = ff(x) return x class SSTransformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_head, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout): super().__init__() self.layers = nn.ModuleList([]) self.k_layers = nn.ModuleList([]) self.channels_to_embedding = nn.Linear(num_patches, b_dim) self.cls_token = nn.Parameter(torch.randn(1, 1, b_dim)) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout))) ])) for _ in range(b_depth): self.k_layers.append(nn.ModuleList([ Residual(PreNorm(b_dim, Attention(dim=b_dim, heads=b_heads, dim_head=b_dim_head, dropout = dropout))), Residual(PreNorm(b_dim, FeedForward(b_dim, b_mlp_head, dropout = dropout))) ])) def forward(self, x, mask = None): for attn, ff in self.layers: x = attn(x, mask = mask) x = ff(x) x = rearrange(x, 'b n d -> b d n') x = self.channels_to_embedding(x) b, d, n = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim = 1) for attn, ff in self.k_layers: x = attn(x, mask = mask) x = ff(x) return x class SSTransformer_pyramid(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_head, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout): super().__init__() self.layers = nn.ModuleList([]) self.k_layers = nn.ModuleList([]) self.channels_to_embedding = nn.Linear(num_patches, b_dim) self.cls_token = nn.Parameter(torch.randn(1, 1, b_dim)) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout))) ])) for _ in range(b_depth): self.k_layers.append(nn.ModuleList([ Residual(PreNorm(b_dim, Attention(dim=b_dim, heads=b_heads, dim_head=b_dim_head, dropout = dropout))), Residual(PreNorm(b_dim, FeedForward(b_dim, b_mlp_head, dropout = dropout))) ])) def forward(self, x, mask = None): for attn, ff in self.layers: x = attn(x, mask = mask) x = ff(x) out_feature = x x = rearrange(x, 'b n d -> b d n') x = self.channels_to_embedding(x) b, d, n = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim = 1) for attn, ff in self.k_layers: x = attn(x, mask = mask) x = ff(x) return x, out_feature class ViT(nn.Module): def __init__(self, image_size, near_band, num_patches, num_classes, dim, depth, heads, mlp_dim, pool='cls', channel_dim=1, dim_head = 16, dropout=0., emb_dropout=0., mode='ViT'): super().__init__() patch_dim = image_size ** 2 * near_band self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.patch_to_embedding = nn.Linear(channel_dim, dim) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, num_patches, mode) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, x, mask = None): # patchs[batch, patch_num, patch_size*patch_size*c] [batch,200,145*145] # x = rearrange(x, 'b c h w -> b c (h w)') ## embedding every patch vector to embedding size: [batch, patch_num, embedding_size] x = self.patch_to_embedding(x) #[b,n,dim] b, n, _ = x.shape # add position embedding cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) #[b,1,dim] x = torch.cat((cls_tokens, x), dim = 1) #[b,n+1,dim] x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) # transformer: x[b,n + 1,dim] -> x[b,n + 1,dim] x = self.transformer(x, mask) # classification: using cls_token output x = self.to_latent(x[:,0]) # MLP classification layer return self.mlp_head(x) class SSFormer_v4(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_head, b_dim, b_depth, b_heads, b_dim_head, b_mlp_head, num_patches, dropout, mode): super().__init__() self.layers = nn.ModuleList([]) self.k_layers = nn.ModuleList([]) self.channels_to_embedding = nn.Linear(num_patches, b_dim) self.cls_token = nn.Parameter(torch.randn(1, 1, b_dim)) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_head, dropout = dropout))) ])) for _ in range(b_depth): self.k_layers.append(nn.ModuleList([ Residual(PreNorm(b_dim, Attention(dim=b_dim, heads=b_heads, dim_head=b_dim_head, dropout = dropout))), Residual(PreNorm(b_dim, FeedForward(b_dim, b_mlp_head, dropout = dropout))) ])) self.mode = mode def forward(self, x, c, mask = None): for attn, ff in self.layers: x = attn(x, mask = mask) x = ff(x) x = rearrange(x, 'b n d -> b d n') x = self.channels_to_embedding(x) b, d, n = x.shape cls_tokens = repeat(c, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim = 1) for attn, ff in self.k_layers: x = attn(x, mask = mask) x = ff(x) return x