Spaces:
Running
Running
File size: 5,091 Bytes
d8d37b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Object Detection - Hugging Face Transformers.js</title>
<script type="module">
// Import the library
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// Make it available globally
window.pipeline = pipeline;
</script>
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet">
<link rel="stylesheet" href="css/styles.css">
</head>
<body>
<div class="container-main">
<!-- Page Header -->
<div class="header">
<div class="header-logo">
<img src="images/logo.png" alt="logo">
</div>
<div class="header-main-text">
<h1>Hugging Face Transformers.js</h1>
</div>
<div class="header-sub-text">
<h3>Free AI Models for JavaScript Web Development</h3>
</div>
</div>
<hr> <!-- Separator -->
<!-- Back to Home button -->
<div class="row mt-5">
<div class="col-md-12 text-center">
<a href="index.html" class="btn btn-outline-secondary"
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
</div>
</div>
<!-- Content -->
<div class="container mt-5">
<!-- Centered Titles -->
<div class="text-center">
<h2>Computer Vision</h2>
<h4>Object Detection</h4>
</div>
<!-- Actual Content of this page -->
<div id="object-detection-container" class="container mt-4">
<h5>Run Object Detection with facebook/detr-resnet-50:</h5>
<div class="d-flex align-items-center">
<label for="objectDetectionURLText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter
image URL:</label>
<input type="text" class="form-control flex-grow-1" id="objectDetectionURLText"
value="https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg"
placeholder="Enter image" style="margin-right: 15px; margin-left: 15px;">
<button id="DetectButton" class="btn btn-primary" onclick="detectImage()">Detect</button>
</div>
<div class="mt-4">
<h4>Output:</h4>
<pre id="outputArea"></pre>
</div>
</div>
<hr> <!-- Line Separator -->
<div id="object-detection-local-container" class="container mt-4">
<h5>Detect a Local Image:</h5>
<div class="d-flex align-items-center">
<label for="objectDetectionLocalFile" class="mb-0 text-nowrap"
style="margin-right: 15px;">Select Local Image:</label>
<input type="file" id="objectDetectionLocalFile" accept="image/*" />
<button id="DetectButtonLocal" class="btn btn-primary"
onclick="detectImageLocal()">Detect</button>
</div>
<div class="mt-4">
<h4>Output:</h4>
<pre id="outputAreaLocal"></pre>
</div>
</div>
<!-- Back to Home button -->
<div class="row mt-5">
<div class="col-md-12 text-center">
<a href="index.html" class="btn btn-outline-secondary"
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
</div>
</div>
</div>
</div>
<script>
let detector;
// Initialize the sentiment analysis model
async function initializeModel() {
detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
}
async function detectImage() {
const textFieldValue = document.getElementById("objectDetectionURLText").value.trim();
const result = await detector(textFieldValue, { threshold: 0.9 });
document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2);
}
async function detectImageLocal() {
const fileInput = document.getElementById("objectDetectionLocalFile");
const file = fileInput.files[0];
if (!file) {
alert('Please select an image file first.');
return;
}
// Create a Blob URL from the file
const url = URL.createObjectURL(file);
const result = await detector(url, { threshold: 0.9 });
document.getElementById("outputAreaLocal").innerText = JSON.stringify(result, null, 2);
}
// Initialize the model after the DOM is completely loaded
window.addEventListener("DOMContentLoaded", initializeModel);
</script>
</body>
</html> |