import streamlit as st import transformers import torch # Load the model and tokenizer model = transformers.AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_sentiment_model") tokenizer = transformers.AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_sentiment_tokenizer") # Define the function for sentiment analysis @st.cache_resource def predict_sentiment(text): # Tokenize the text encoded_input = tokenizer(text, truncation=True, padding=True, return_tensors='pt') # Forward pass through the model output = model(**encoded_input) logits = output.logits # Compute probabilities and predicted label probabilities = torch.softmax(logits, dim=1) predicted_label = torch.argmax(probabilities, dim=1) # Get sentiment label and score sentiment_label = tokenizer.decode(predicted_label.squeeze().item()) sentiment_score = probabilities[0, predicted_label].item() return sentiment_label, sentiment_score # Setting the page configurations st.set_page_config( page_title="Sentiment Analysis App", page_icon=":smile:", layout="wide", initial_sidebar_state="auto", ) # Add description and title st.write(""" # How Positive or Negative is your Text? Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment! """) # Add image image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400) # Get user input text = st.text_input("Enter some text here:") # Define the CSS style for the app st.markdown( """ """, unsafe_allow_html=True ) # Show sentiment output if text: sentiment, score = predict_sentiment(text) if sentiment == "Positive": st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") elif sentiment == "Negative": st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") else: st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")