File size: 2,135 Bytes
4bc3168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import streamlit as st
import transformers
import torch

# Load the model and tokenizer
model = transformers.AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_sentiment_model")
tokenizer = transformers.AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_sentiment_tokenizer")

# Define the function for sentiment analysis
@st.cache_resource
def predict_sentiment(text):
    # Tokenize the text
    encoded_input = tokenizer(text, truncation=True, padding=True, return_tensors='pt')
    
    # Forward pass through the model
    output = model(**encoded_input)
    logits = output.logits
    
    # Compute probabilities and predicted label
    probabilities = torch.softmax(logits, dim=1)
    predicted_label = torch.argmax(probabilities, dim=1)
    
    # Get sentiment label and score
    sentiment_label = tokenizer.decode(predicted_label.squeeze().item())
    sentiment_score = probabilities[0, predicted_label].item()
    
    return sentiment_label, sentiment_score

# Setting the page configurations
st.set_page_config(
    page_title="Sentiment Analysis App",
    page_icon=":smile:",
    layout="wide",
    initial_sidebar_state="auto",
)

# Add description and title
st.write("""
# How Positive or Negative is your Text?
Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!
""")


# Add image
image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400)

# Get user input
text = st.text_input("Enter some text here:")

# Define the CSS style for the app
st.markdown(
"""
<style>
body {
    background-color: #f5f5f5;
}
h1 {
    color: #4e79a7;
}
</style>
""",
unsafe_allow_html=True
)

# Show sentiment output
if text:
    sentiment, score = predict_sentiment(text)
    if sentiment == "Positive":
        st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
    elif sentiment == "Negative":
        st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
    else:
        st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")