Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import pickle | |
import pandas as pd | |
import numpy as np | |
import uvicorn | |
# call the app | |
app = FastAPI(title="API") | |
# Load the model and scaler | |
def load_model_and_scaler(): | |
with open("model.pkl", "rb") as f1, open("scaler.pkl", "rb") as f2: | |
return pickle.load(f1), pickle.load(f2) | |
model, scaler = load_model_and_scaler() | |
# define your predict function | |
def predict(df, endpoint="simple"): | |
# Scaling | |
scaled_df = scaler.transform(df) # Scale the input data using a pre-defined scaler | |
# Prediction | |
prediction = model.predict(scaled_df) # Make predictions using a pre-trained XGBoost regressor model | |
response = [] | |
for eta in prediction: | |
# Convert NumPy float to Python native float | |
eta = float(eta) | |
# Create a response for each prediction with the predicted ETA | |
output = { | |
"predicted_eta": eta | |
} | |
response.append(output) # Add the response to the list of responses | |
return response # Return the list of responses | |
class Trip(BaseModel): | |
Origin_lat: float | |
Origin_lon: float | |
Destination_lat: float | |
Destination_lon: float | |
Trip_distance: int # Assuming this column represents an integer value | |
total_secs: int # Assuming this column represents an integer value | |
dewpoint_2m_temperature: float | |
maximum_2m_air_temperature: float | |
mean_2m_air_temperature: float | |
mean_sea_level_pressure: float | |
minimum_2m_air_temperature: float | |
surface_pressure: float | |
total_precipitation: float | |
u_component_of_wind_10m: float | |
v_component_of_wind_10m: float | |
class Trips(BaseModel): | |
all_trips: list[Trip] | |
def return_list_of_dict(cls, trips: "Trips"): | |
trip_list = [] | |
for trip in trips.all_trips: # for each item in all_trips | |
trip_dict = trip.dict() # convert to a dictionary | |
trip_list.append(trip_dict) # add it to the empty list called trip_list | |
return trip_list | |
# Endpoints | |
# Root Endpoint | |
def root(): | |
return {"Welcome to the ETA Prediction API! This API provides endpoints for predicting ETA based on trip data."} | |
# Prediction endpoint | |
def predict_eta(trip: Trip): | |
# Make prediction | |
data = pd.DataFrame(trip.dict(), index=[0]) | |
predicted_eta = predict(df=data) | |
return predicted_eta | |
# Multiple Prediction Endpoint | |
def predict_eta_for_multiple_trips(trips: Trips): | |
"""Make prediction with the passed data""" | |
data = pd.DataFrame(Trips.return_list_of_dict(trips)) | |
predicted_eta = predict(df=data, endpoint="multi") | |
return {"predicted_eta": predicted_eta} | |
if __name__ == "__main__": | |
uvicorn.run("main:app", reload=True) |