Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import pickle | |
import pandas as pd | |
import numpy as np | |
import uvicorn | |
# call the app | |
app = FastAPI(title="API") | |
# Load the model and scaler | |
def load_model_and_scaler(): | |
with open("model.pkl", "rb") as f1, open("scaler.pkl", "rb") as f2: | |
return pickle.load(f1), pickle.load(f2) | |
model, scaler = load_model_and_scaler() | |
def predict(df, endpoint="simple"): | |
# Scaling | |
scaled_df = scaler.transform(df) # Scale the input data using a pre-defined scaler | |
# Prediction | |
prediction = model.predict_proba(scaled_df) # Make predictions using a pre-trained model | |
highest_proba = prediction.max(axis=1) # Get the highest probability for each prediction | |
# Assign predicted labels based on the highest probabilities | |
predicted_labels = ["Patient does not have sepsis" if i == 0 else "Patient has sepsis" for i in highest_proba] | |
print(f"Predicted labels: {predicted_labels}") # Print the predicted labels to the terminal | |
print(highest_proba) # Print the highest probabilities to the terminal | |
response = [] | |
for label, proba in zip(predicted_labels, highest_proba): | |
# Create a response for each prediction with the predicted label and probability | |
output = { | |
"prediction": label, | |
"probability of prediction": str(round(proba * 100)) + '%' # Convert the probability to a percentage | |
} | |
response.append(output) # Add the response to the list of responses | |
return response # Return the list of responses | |
class Patient(BaseModel): | |
Blood_Work_R1: int | |
Blood_Pressure: int | |
Blood_Work_R3: int | |
BMI: float | |
Blood_Work_R4: float | |
Patient_age: int | |
class Patients(BaseModel): | |
all_patients: list[Patient] | |
def return_list_of_dict(cls, patients: "Patients"): | |
patient_list = [] | |
for patient in patients.all_patients: #for each item in all_patients, | |
patient_dict = patient.dict() #convert to a dictionary | |
patient_list.append(patient_dict) #add it to the empty list called patient_list | |
return patient_list | |
# Endpoints | |
# Root Endpoint | |
def root(): | |
return {"Welcome to the Sepsis Prediction API! This API provides endpoints for predicting sepsis based on patient data."} | |
# Prediction endpoint | |
def predict_sepsis(patient: Patient): | |
# Make prediction | |
data = pd.DataFrame(patient.dict(), index=[0]) | |
parsed = predict(df=data) | |
return {"output": parsed} | |
# Multiple Prediction Endpoint | |
def predict_sepsis_for_multiple_patients(patients: Patients): | |
"""Make prediction with the passed data""" | |
data = pd.DataFrame(Patients.return_list_of_dict(patients)) | |
parsed = predict(df=data, endpoint="multi") | |
return {"output": parsed} | |
if __name__ == "__main__": | |
uvicorn.run("main:app", reload=True) |