Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,415 Bytes
26ef7d6 17aaf2d 26ef7d6 17aaf2d 26ef7d6 17aaf2d f7b7ab1 a567a68 17aaf2d 26ef7d6 17aaf2d 64712db 17aaf2d a967a05 17aaf2d 26ef7d6 17aaf2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import spaces
import time
from diffusers import AutoPipelineForInpainting
from transformers import pipeline
from ultralytics import YOLO
from PIL import Image
import numpy as np
import torch
import base64
from io import BytesIO
import gradio as gr
from gradio import components
import difflib
# Constants
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load
def image_to_base64(image: Image.Image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def get_most_similar_string(target_string, string_array):
differ = difflib.Differ()
best_match = string_array[0]
best_match_ratio = 0
for candidate_string in string_array:
similarity_ratio = difflib.SequenceMatcher(None, target_string, candidate_string).ratio()
if similarity_ratio > best_match_ratio:
best_match = candidate_string
best_match_ratio = similarity_ratio
return best_match
def loadModels():
yoloModel=YOLO('yolov8x-seg.pt')
pipe =AutoPipelineForInpainting.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
torch_dtype=torch.float32
).to(DEVICE)
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE)
#return gpt_model, gpt_tokenizer, gpt_params,yoloModel,pipe,image_captioner
return yoloModel,pipe,image_captioner
# Yolo
def getClasses(model,img1):
results = model([img1])
out=[]
for r in results:
#im_array = r.plot(boxes=False,labels=False) # plot a BGR numpy array of predictions
im_array = r.plot()
out.append(r)
return r,im_array[..., ::-1],results
def getMasks(out):
allout={}
class_masks = {}
for a in out:
class_name = a['name']
mask = a['img']
if class_name in class_masks:
class_masks[class_name] = Image.fromarray(
np.maximum(np.array(class_masks[class_name]), np.array(mask))
)
else:
class_masks[class_name] = mask
for class_name, mask in class_masks.items():
allout[class_name]=mask
return allout
def joinClasses(classes):
i=0
out=[]
for r in classes:
masks=r.masks
name0=r.names[int(r.boxes.cls.cpu().numpy()[0])]
mask1 = masks[0]
mask = mask1.data[0].cpu().numpy()
polygon = mask1.xy[0]
# Normalize the mask values to 0-255 if needed
mask_normalized = ((mask - mask.min()) * (255 / (mask.max() - mask.min()))).astype(np.uint8)
mask_img = Image.fromarray(mask_normalized, "L")
out.append({'name':name0,'img':mask_img})
i+=1
allMask=getMasks(out)
return allMask
def getSegments(yoloModel,img1):
classes,image,results1=getClasses(yoloModel,img1)
allMask=joinClasses(classes)
return allMask
# Gradio UI
@spaces.GPU
def getDescript(image_captioner,img1):
base64_img = image_to_base64(img1)
caption = image_captioner(base64_img)[0]['generated_text']
return caption
def rmGPT(caption,remove_class):
arstr=caption.split(' ')
popular=get_most_similar_string(remove_class,arstr)
ind=arstr.index(popular)
new=[]
for i in range(len(arstr)):
if i not in list(range(ind-2,ind+3)):
new.append(arstr[i])
return ' '.join(new)
# SDXL
def ChangeOBJ(sdxl_m,img1,response,mask1):
size = img1.size
image = sdxl_m(prompt=response, image=img1, mask_image=mask1).images[0]
return image.resize((size[0], size[1]))
yoloModel,sdxl,image_captioner=loadModels()
@spaces.GPU
def full_pipeline(image, target):
img1 = Image.fromarray(image.astype('uint8'), 'RGB')
allMask=getSegments(yoloModel,img1)
tartget_to_remove=get_most_similar_string(target,list(allMask.keys()))
caption=getDescript(image_captioner,img1)
response=rmGPT(caption,tartget_to_remove)
mask1=allMask[tartget_to_remove]
remimg=ChangeOBJ(sdxl,img1,response,mask1)
return remimg,caption,response
iface = gr.Interface(
fn=full_pipeline,
inputs=[
gr.Image(label="Upload Image"),
gr.Textbox(label="What to delete?"),
],
outputs=[
gr.Image(label="Result Image", type="numpy"),
gr.Textbox(label="Caption"),
gr.Textbox(label="Message"),
],
live=False
)
iface.launch() |