Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import warnings | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq, MarianMTModel, MarianTokenizer, AutoModelForSequenceClassification, AutoProcessor, pipeline | |
import torch | |
from pydub import AudioSegment | |
import gradio as gr | |
# Suppress specific warnings related to transformers and audio processing | |
warnings.filterwarnings("ignore", category=UserWarning) | |
warnings.filterwarnings("ignore", message="Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.") | |
warnings.filterwarnings("ignore", message="Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'.") | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Set the computation device and data type for the model based on CUDA availability | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# Preload necessary models and tokenizers | |
summarizer_tokenizer = AutoTokenizer.from_pretrained('cranonieu2021/pegasus-on-lectures') | |
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("cranonieu2021/pegasus-on-lectures", torch_dtype=torch_dtype).to(device) | |
translator_tokenizer = MarianTokenizer.from_pretrained("sfarjebespalaia/enestranslatorforsummaries") | |
translator_model = MarianMTModel.from_pretrained("sfarjebespalaia/enestranslatorforsummaries", torch_dtype=torch_dtype).to(device) | |
classifier_tokenizer = AutoTokenizer.from_pretrained("gserafico/roberta-base-finetuned-classifier-roberta1") | |
classifier_model = AutoModelForSequenceClassification.from_pretrained("gserafico/roberta-base-finetuned-classifier-roberta1", torch_dtype=torch_dtype).to(device) | |
def transcribe_audio(audio_file_path): | |
""" | |
Transcribes audio from a file to text using the specified model. | |
Parameters: | |
audio_file_path (str): Path to the audio file. | |
Returns: | |
str: Transcribed text. | |
""" | |
try: | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device) | |
result = pipe(audio_file_path) | |
logging.info("Audio transcription completed successfully.") | |
return result['text'] | |
except Exception as e: | |
logging.error(f"Error transcribing audio: {e}") | |
raise | |
def load_and_process_input(file_info): | |
""" | |
Loads and processes an input file based on its extension. | |
Parameters: | |
file_info (str): Path to the file. | |
Returns: | |
str: Processed text or transcription of audio. | |
""" | |
file_path = file_info # Assuming it's just the path | |
original_filename = os.path.basename(file_path) # Extract filename from path | |
extension = os.path.splitext(original_filename)[-1].lower() | |
try: | |
if extension == ".txt": | |
with open(file_path, 'r', encoding='utf-8') as file: | |
text = file.read() | |
elif extension in [".mp3", ".wav"]: | |
if extension == ".mp3": | |
file_path = convert_mp3_to_wav(file_path) | |
text = transcribe_audio(file_path) | |
else: | |
raise ValueError("Unsupported file type provided.") | |
except Exception as e: | |
logging.error(f"Error processing input file: {e}") | |
raise | |
return text | |
def convert_mp3_to_wav(file_path): | |
""" | |
Converts an MP3 audio file to WAV format. | |
Parameters: | |
file_path (str): Path to the MP3 file. | |
Returns: | |
str: Path to the WAV file created. | |
""" | |
try: | |
wav_file_path = file_path.replace(".mp3", ".wav") | |
audio = AudioSegment.from_file(file_path, format='mp3') | |
audio.export(wav_file_path, format="wav") | |
logging.info("MP3 file converted to WAV.") | |
return wav_file_path | |
except Exception as e: | |
logging.error(f"Error converting MP3 to WAV: {e}") | |
raise | |
def process_text(text, summarization=False, translation=False, classification=False): | |
""" | |
Processes text for summarization, translation, and classification based on options selected. | |
Parameters: | |
text (str): Text to process. | |
summarization (bool): Whether to perform summarization. | |
translation (bool): Whether to perform translation. | |
classification (bool): Whether to perform classification. | |
Returns: | |
dict: Results of the processing tasks. | |
""" | |
results = {} | |
intermediate_text = text # Start with the original text | |
# Summary generation | |
if summarization: | |
inputs = summarizer_tokenizer(intermediate_text, max_length=1024, return_tensors="pt", truncation=True) | |
summary_ids = summarizer_model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) | |
summary_text = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
results['summarized_text'] = summary_text | |
intermediate_text = summary_text # Use summary for further processing if needed | |
# Text translation | |
if translation: | |
tokenized_text = translator_tokenizer.prepare_seq2seq_batch([intermediate_text], return_tensors="pt") | |
translated = translator_model.generate(**tokenized_text) | |
translated_text = ' '.join(translator_tokenizer.decode(t, skip_special_tokens=True) for t in translated) | |
results['translated_text'] = translated_text.strip() | |
# Text classification | |
if classification: | |
inputs = classifier_tokenizer(intermediate_text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = classifier_model(**inputs) | |
predicted_class_idx = torch.argmax(outputs.logits, dim=1).item() | |
labels = { | |
0: 'Social Sciences', | |
1: 'Arts', | |
2: 'Natural Sciences', | |
3: 'Business and Law', | |
4: 'Engineering and Technology' | |
} | |
results['classification_result'] = labels[predicted_class_idx] | |
return results | |
def display_results(results): | |
""" | |
Displays the results of the text processing tasks. | |
Parameters: | |
results (dict): Dictionary containing the results of text processing. | |
""" | |
if 'summarized_text' in results: | |
print("Summarized Text:") | |
print(results['summarized_text']) | |
if 'translated_text' in results: | |
print("Translated Text:") | |
print(results['translated_text']) | |
if 'classification_result' in results: | |
print('Classification Result:') | |
print(f"This text is classified under: {results['classification_result']}") | |
def wrap_process_file(file_obj, tasks): | |
""" | |
Processes the uploaded file and returns results for selected tasks. | |
Parameters: | |
file_obj (tuple): File object containing the file path and original filename. | |
tasks (list): List of tasks to be performed on the file. | |
Returns: | |
tuple: Results of the tasks. | |
""" | |
if file_obj is None: | |
return "Please upload a file to proceed.", "", "", "" | |
# Assuming file_obj is a tuple containing (temp file path, original file name) | |
text = load_and_process_input(file_obj) | |
results = process_text(text, 'Summarization' in tasks, 'Translation' in tasks, 'Classification' in tasks) | |
return (results.get('summarized_text', ''), | |
results.get('translated_text', ''), | |
results.get('classification_result', '')) | |
def create_gradio_interface(): | |
""" | |
Creates a Gradio interface for file processing and result display. | |
Returns: | |
gr.Blocks: Gradio interface configured for the application. | |
""" | |
with gr.Blocks(theme="huggingface") as demo: | |
gr.Markdown("# LectorSync 1.0") | |
gr.Markdown("## Upload your file and select the tasks:") | |
with gr.Row(): | |
file_input = gr.File(label="Upload your text, mp3, or wav file") | |
task_choice = gr.CheckboxGroup(["Summarization", "Translation", "Classification"], label="Select Tasks") | |
submit_button = gr.Button("Process") | |
output_summary = gr.Text(label="Summarized Text") | |
output_translation = gr.Text(label="Translated Text") | |
output_classification = gr.Text(label="Classification Result") | |
submit_button.click( | |
fn=wrap_process_file, | |
inputs=[file_input, task_choice], | |
outputs=[output_summary, output_translation, output_classification] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.launch() |